Refrigerant Operating Pressures and Temperatures
Liquid pressure at Liquid service valve pressure tapPSIG
Vapor pressure at suction service valve pressure tapPSIG
Liquid pressure at liquid line charging port (heat pumps)PSIG
Vapor pressure at suction line charging port (heat pumps)PSIG
Liquid line temperature at service valve location°F
Suction line temperature at service valve location°F
Suction line temperature leaving indoor coil°F
Super Heat and Sub Cooling Calculations
Temperature of suction line at service valve °F db
Pressure at service valve converted to temperature °F db
Temperature difference in super heat°F db SH
Pressure at liquid line service valve converted to temperature °F db
Temperature of liquid line at service valve °F db
Temperature difference in sub cooling°F db
Indoor and outdoor coil Delta temperatures
Temperature of air entering indoor coil°F db,°F wb (return)
Temperature of air leaving indoor coil °F db, °F wb (supply)
Temperature entering outdoor coil °F db (1 inch from coil surface)
Total heat calculation
Wet Bulb temperature of air leaving indoor coil converted to BTU per pound of
dry airBTU [H₂] (enthalpy at saturation)
Wet bulb temperature of air entering indoor coil converted to BTU per pound of
dry air BTU [H ₁] (enthalpy at saturation)
$H_t = CFM_T \times 4.5 \times (h_1 - H_2)$
H _t =BTUs
Report completed by: Date: