

Gustave A. Larson Company

**Heat Pump System with Air Handler
Job-Site Information Sheet**

Date _____

Case # _____

Owner

Name _____
Street _____
City _____ Zip _____
State _____
Phone _____

Servicing Contractor:

Name _____
Street _____
City _____ Zip _____
State _____
Phone _____

Equipment Information:

Heat Pump: Model # _____ Serial # _____ Date Installed: _____

Evaporator: Model # _____ Serial # _____ Date Installed: _____

Air Handler: Model # _____ Serial # _____ Date Installed: _____

Furnace: Model # _____ Serial # _____ Date Installed: _____

Description of Problem: _____


Actions Taken to Correct Problem: _____

Notes: _____

Outdoor Unit Data

IMPORTANT: Run unit at least 10 minutes before taking measurements, except for the Standby Line Voltage measurements, which should be taken before the unit is turned on.

Heat Pump Data – Cooling Mode

Condenser Air Discharge Temperature _____ °F

Outdoor Fan Amps _____

Line Voltage:
Standby _____
Starting _____
Running _____
Wire Size _____

Outdoor Temperature _____ °F

Low Voltage _____

Compressor Amps:
Starting _____
Running _____

Coil Condition (dirty/clean) _____

Fin Condition _____

Discharge Line Temperature _____ °F

True Suction Port Pressure _____

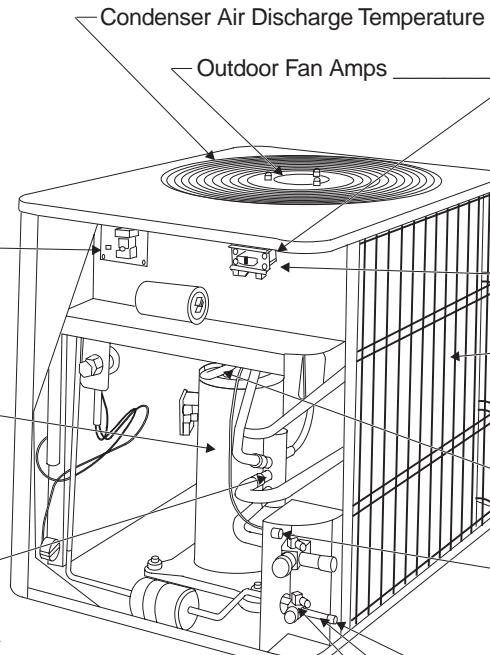
Reversing Valve:
Energized - 24V? (yes/no) _____

Suction Pressure (B) _____

Suction Line Temperature (A) _____ °F

Suction Line Set Size _____ Length _____

Liquid Line Set Size _____ Length _____


Liquid Line Temperature (C) _____ °F

(A) - (B) temp. conversion = _____ °F Superheat

(C) - (D) temp. conversion = _____ °F Subcooling

Liquid Pressure (D) _____

Heat Pump Data – Heating Mode

Condenser Air Discharge Temperature _____ °F

Outdoor Fan Amps _____

Line Voltage:
Standby _____
Starting _____
Running _____
Wire Size _____

Defrost Control: _____

24V between R + C? _____

DFS Closed/Open? _____

Low Voltage _____

Compressor Amps:
Starting _____
Running _____

Coil Condition (dirty/clean) _____

Fin Condition _____

Discharge Line Temperature _____ °F

True Suction Port Pressure _____

Reversing Valve:
Energized? (yes/no) _____

Liquid Line Set Size _____ Length _____

Liquid Line Temperature (C) _____ °F

Liquid Pressure (D) _____

Outdoor Temperature _____ °F

Indoor Unit Data

Although the following graphics show an A coil, some air handlers utilize a slant slab coil instead.
The same data needs to be recorded regardless of the coil type.

Upflow

IMPORTANT: Run unit at least 10 minutes before taking measurements.

Type of Metering Device:

TXV _____

Piston (Size) _____

Cap Tube _____

Line Voltage _____

Low Voltage _____

Suction Line Size _____

Liquid Line Size _____

Return Air Temperature (B) _____ °F (DB)
____ °F (WB)

Supply Air Temperature (A) _____ °F (DB)
____ °F (WB)

Supply Air Static Pressure + _____ " W.C.

Blower Motor Speed Tap (Cooling) _____

Plenum Size:
Return _____
Supply _____

Number of Runs _____

Coil Condition _____
Condensate Trap? (yes/no) _____
Filter Type/Size _____
Filter Condition _____

Return Air Static Pressure - _____ " W.C.

Total Static Pressure _____ " W.C. (B) - (A) = _____ °F Temperature Drop

Counterflow

IMPORTANT: Run unit at least 10 minutes before taking measurements.

Type of Metering Device:

TXV _____

Piston (Size) _____

Cap Tube _____

Line Voltage _____

Low Voltage _____

Suction Line Size _____

Liquid Line Size _____

Supply Air Static Pressure + _____ " W.C.

Filter Type/Size _____
Filter Condition _____

Return Air Temperature (B) _____ °F (DB)
____ °F (WB)

Return Air Static Pressure - _____ " W.C.

Condensate Trap? (yes/no) _____
Coil Condition _____

Plenum Size:
Return _____
Supply _____

Number of Runs _____

Supply Air Temperature (A) _____ °F (DB)
____ °F (WB)

Blower Motor Speed Tap (Cooling) _____

Total Static Pressure _____ " W.C. (B) - (A) = _____ °F Temperature Drop

Indoor Unit Data (cont.)

Horizontal – Left to Right Airflow

IMPORTANT: Run unit at least 10 minutes before taking measurements.

Filter Condition _____

Supply Air Temperature (A) _____ °F (DB)
____ °F (WB)

Supply Air Static Pressure + _____ " W.C.

Return Air Temperature (B) _____ °F (DB)
____ °F (WB)

Return Air Static Pressure - _____ " W.C.

Coil Condition _____

Condensate Trap? (yes/no) _____

Type of Metering Device:

TXV _____

Piston (Size) _____ (B) - (A) = _____ °F Temperature Drop

Cap Tube _____

Line Voltage _____

Low Voltage _____

Suction Line Size _____

Liquid Line Size _____

Plenum Size:

Return _____

Supply _____

Number of Runs _____

Horizontal – Right to Left Airflow

IMPORTANT: Run unit at least 10 minutes before taking measurements.

Supply Air Static Pressure + _____ " W.C.

Supply Air Temperature (A) _____ °F (DB)
____ °F (WB)

Return Air Temperature (B) _____ °F (DB)
____ °F (WB)

Filter Type/Size _____

Filter Condition _____

Return Air Static Pressure - _____ " W.C.

Condensate Trap? (yes/no) _____

Coil Condition _____

(B) - (A) = _____ °F Temperature Drop

Total Static Pressure _____ " W.C.

Blower Motor Speed Tap (Cooling) _____

Suction Line Size _____

Liquid Line Size _____

Type of Metering Device:

TXV _____

Piston (Size) _____

Cap Tube _____

Supply _____

Number of Runs _____

Line Voltage _____

Low Voltage _____