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2.1 Thermodynamics Heat Transfer and Fluid Mechanics Basics

Vahab Hassani and Steve Hauser

Design and analysis of energy conversion systems require an in-depth understanding of basic principles
of thermodynamics, heat transfer, and fluid mechanics. Thermodynamics is that branch of engineering
science that describes the relationship and interaction between a system and its surroundings. This
interaction usually occurs as a transfer of energy, mass, or momentum between a system and its sur-
roundings. Thermodynamic laws are usually used to predict the changes that occur in a system when
moving from one equilibrium state to another. The science of heat transfer complements the thermo-
dynamic science by providing additional information about the energy that crosses a system’s boundaries.
Heat-transfer laws provide information about the mechanism of transfer of energy as heat and provide
necessary correlations for calculating the rate of transfer of energy as heat. The science of fluid mechanics,
one of the most basic engineering sciences, provides governing laws for fluid motion and conditions
influencing that motion. The governing laws of fluid mechanics have been developed through a knowledge
of fluid properties, thermodynamic laws, basic laws of mechanics, and experimentation.

In this chapter, we will focus on the basic principles of thermodynamics, heat transfer, and fluid
mechanics that an engineer needs to know to analyze or design an HVAC system. Because of space
limitations, our discussion of important physical concepts will not involve detailed mathematical deri-
vations and proofs of concepts. However, we will provide appropriate references for those readers inter-
ested in obtaining more detail about the subjects covered in this chapter. Most of the material presented
here is accompanied by examples that we hope will lead to better understanding of the concepts.

2.1.1 Thermodynamics

During a typical day, everyone deals with various engineering systems such as automobiles, refrigerators,
microwaves, and dishwashers. Each engineering system consists of several components, and a system’s
optimal performance depends on each individual component’s performance and interaction with other
components. In most cases, the interaction between various components of a system occurs in the form
of energy transfer or mass transfer. Thermodynamics is an engineering science that provides governing
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laws that describe energy transfer from one form to another in an engineering system. In this chapter,
the basic laws of thermodynamics and their application for energy conversion systems are covered in the
following four sections. The efficiency of the thermodynamic cycles and explanations of some advanced
thermodynamic systems are presented in the succeeding two sections. Several examples have been pre-
sented to illustrate the application of concepts covered here. Because of the importance of moist air
HVAC processes, these are treated in Chapter 2.2.

Energy and the First Law of Thermodynamics

In performing engineering thermodynamic analysis, we must define the system under consideration.
After properly identifying a thermodynamic system, everything else around the system becomes that
system’s environment. Of interest to engineers and scientists is the interaction between the system and its
environment.

In thermodynamic analysis, systems can either consist of specified matter (controlled mass, CM) or
specified space (control volume, CV). In a control-mass system, energy—but not mass—can cross the
system boundaries while the system is going through a thermodynamic process. Control-mass systems
may be called closed systems because no mass can cross their boundary. On the other hand, in a control-
volume system—also referred to as an open system—both energy and matter can cross the system
boundaries. The shape and size of CVs need not necessarily be constant and fixed; however, in this
chapter, we will assume that the CVs are of fixed shape and size. Another system that should be defined
here is an isolated system, which is a system where no mass or energy crosses its boundaries.

The energy of a system consists of three components: kinetic energy, potential energy, and internal
energy. The kinetic and potential energy of a system are macroscopically observable. Internal energy is
associated with random and disorganized aspects of molecules of a system and is not directly observable.
In thermodynamic analysis of systems, the energy of the whole system can be obtained by adding the
individual energy components.

Conservation of Energy — The First Law of Thermodynamics

The First Law of Thermodynamics states that energy is conserved: it cannot be created or destroyed, but
can change from one form to another. The energy of a closed system can be expressed as

(2.1.1)

where E is the total energy of the system, e is its internal energy per unit mass, and the last two terms
are the kinetic energy and potential energy of the system, respectively. The proportionality constant gc

is defined in the nomenclature (listed at the end of this chapter) and is discussed in the text following
Eq. (2.1.73). When a system undergoes changes, the energy change within the system can be expressed
by a general form of the energy-balance equation:

Energy stored = Energy entering – Energy leaving + Energy generated
in the system the system the system in the system

(e.g., chemical reactions)

For example, consider the geothermal-based heat pump shown in Figure 2.1.1. In this heat pump, a
working fluid (R-22, a common refrigerant used with geothermal heat pumps, which is gaseous at room
temperature and pressure) is sealed in a closed loop and is used as the transport medium for energy.
Figure 2.1.2 presents a simple thermodynamic cycle for a heat pump (heating mode) and an associated
pressure-enthalpy (p-h) diagram. The saturated vapor and liquid lines are shown in Figure 2.1.2, and
the region between these two lines is referred to as the wet region, where vapor and liquid coexist. The
relative quantities of liquid and vapor in the mixture, known as the quality of the mixture (x), is usually
used to denote the state of the mixture. The quality of a mixture is defined as the ratio of the mass of
vapor to the mass of the mixture. For example, in 1 kg of mixture with quality x, there are x kg of vapor
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and (1 – x) kg of liquid. Figure 2.1.2 shows that the working fluid leaving the evaporator (point 2) has
a higher quality than working fluid entering the evaporator (point 1). The working fluid in Figure 2.1.2
is circulated through the closed loop and undergoes several phase changes. Within the evaporator, the
working fluid absorbs heat from the surroundings (geothermal resource) and is vaporized. The low-
pressure gas (point 2) is then directed into the compressor, where its pressure and temperature are
increased by compression. The hot compressed gas (point 3) is then passed through the condenser, where
it loses heat to the surroundings (heating up the house). The cool working fluid exiting the condenser
is a high-pressure liquid (point 4), which then passes through an expansion device or valve to reduce its
pressure to that of the evaporator (underground loop).

Specifically, consider the flow of the working fluid in Figure 2.1.1 from point 1 to point 2 through the
system shown within the dashed rectangle. Mass can enter and exit this control-volume system. In flowing
from point 1 to 2, the working fluid goes through the evaporator (see Figure 2.1.2). Assuming no
accumulation of mass or energy, the First Law of Thermodynamics can be written as

(2.1.2)

where  is the mass-flow rate of the working fluid,  is the rate of heat absorbed by the working fluid,
is the rate of work done on the surroundings, v is the specific volume of the fluid, p is the pressure, and
the subscripts 1 and 2 refer to points 1 and 2. A mass-flow energy-transport term, pv, appears in Eq.
(2.1.2) as a result of our choice of control-volume system. The terms e and pv can be combined into a
single term called specific enthalpy, h = e + pv, and Eq. (2.1.2) then reduces to

FIGURE 2.1.1 Geothermal-based (ground-source) heat pump.

FIGURE 2.1.2 Thermodynamic cycle and p-h diagram for heat pump (heating mode).
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(2.1.3)

For a constant-pressure process, the enthalpy change from temperature, T1 to temperature T2 can be
expressed as

(2.1.4)

where p is the mean specific heat at constant pressure.

Entropy and the Second Law of Thermodynamics

In many events, the state of an isolated system can change in a given direction, whereas the reverse process
is impossible. For example, the reaction of oxygen and hydrogen will readily produce water, whereas the
reverse reaction (electrolysis) cannot occur without some external help. Another example is that of adding
milk to hot coffee. As soon as the milk is added to the coffee, the reverse action is impossible to achieve.
These events are explained by the Second Law of Thermodynamics, which provides the necessary tools
to rule out impossible processes by analyzing the events occurring around us with respect to time.
Contrary to the First Law of Thermodynamics, the Second Law is sensitive to the direction of the process.

To better understand the second law of thermodynamics, we must introduce a thermodynamic prop-
erty called entropy (symbolized by S, representing total entropy, and s, representing entropy per unit
mass). The entropy of a system is simply a measure of the degree of molecular chaos or disorder at the
microscopic level within a system.

The more disorganized a system is, the less energy is available to do useful work; in other words, energy
is required to create order in a system. When a system goes through a thermodynamic process, the natural
state of affairs dictates that entropy be produced by that process. In essence, the Second Law of Ther-
modynamics states that, in an isolated system, entropy can be produced, but it can never be destroyed.

(2.1.5)

Thermodynamic processes can be classified as reversible and irreversible processes. A reversible process
is a process during which the net entropy of the system remains unchanged. A reversible process has
equal chances of occurring in either a forward or backward direction because the net entropy remains
unchanged. The absolute incremental entropy change for a closed system of fixed mass in a reversible
process can be calculated from

(2.1.6)

where dS is the increase in entropy, dQ is the heat absorbed, and T is the absolute temperature. However,
the net change in entropy for all the participating systems in the reversible process must equal zero; thus,

(2.1.7)

We emphasize that most real processes are not reversible and the entropy of a real process is not usually
conserved. Therefore, Eq. (2.1.6) can be written in a general form as
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(2.1.8)

where the equality represents the reversible process. A reversible process in which dQ = 0 is called an
isentropic process. It is obvious from Eq. (2.1.6) that for such processes, dS = 0, which means that no
net change occurs in the entropy of the system or its surroundings.

Application of the Thermodynamic Laws to HVAC and Other Energy Conversion Systems

We can now employ these thermodynamic laws to analyze thermodynamic processes that occur in energy
conversion systems. Among the most common energy conversion systems are heat engines and heat
pumps. In Figure 2.1.3, the solid lines indicate the operating principle of a heat engine, where energy
QH, is absorbed from a high-temperature thermal reservoir and is converted to work w by using a turbine,
and the remainder, QL, is rejected to a low-temperature thermal reservoir. The energy-conversion
efficiency of a heat engine is defined as

(2.1.9)

In the early 1800s, Nicholas Carnot showed that to achieve the maximum possible efficiency, the heat
engine must be completely reversible (i.e., no entropy production, no thermal losses due to friction).
Using Eq. (2.1.7), Carnot’s heat engine should give

(2.1.10)

or

(2.1.11)

An energy balance gives

(2.1.12)

FIGURE 2.1.3 Principle of operation of a heat engine (solid lines and upper terms) and heat pump (dashed lines
and lower terms in parentheses).
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Therefore, the maximum possible efficiency is

(2.1.13)

In real processes, however, due to entropy production, the efficiency is

(2.1.14)

A heat pump is basically a heat engine with the reverse thermodynamic process. In heat pumps, work
input allows for thermal energy transfer from a low-temperature reservoir to a high-temperature reservoir
as shown in Figure 2.1.3 by dashed lines. Energy (heat), QL, is absorbed by a working fluid from a low-
temperature reservoir (geothermal resource or solar collectors), then the energy content (temperature
and pressure) of the working fluid is increased as a result of input work, w. The energy, QH, of the working
fluid is then released to a high-temperature reservoir (e.g., a warm house). The efficiency of a heat pump
is defined as

(2.1.15)

The efficiency of a heat pump is often expressed as coefficient of performance (COP). The COP of a
Carnot (or reversible) heat pump can be expressed as

(2.1.16)

Heat pumps are often used in HVAC systems to heat or cool buildings. Heat engines and heat pumps
are broadly discussed by Sandord [1962], Reynolds and Perkins [1977], Wood [1982], Karlekar [1983],
and Van Wylen and Sonntag [1986].

Efficiencies of Thermodynamic Cycles

To evaluate and compare various thermodynamic cycles (or systems), we further define and employ the
term efficiency. The operating efficiency of a system reflects irreversibilities that exist in the system. To
portray various deficiencies or irreversibilities of existing thermodynamic cycles, the following thermo-
dynamic efficiency terms are most commonly considered.

(2.1.17)

which is the ratio of the actual work produced by a system to that of the same system under reversible
process. Note that the reversible process is not necessarily an adiabatic process (which would involve heat
transfer across the boundaries of the system).

(2.1.18)

which is the ratio of actual work to the work done under an isentropic process.

(2.1.19)
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which is the ratio of reversible work to isentropic work.

(2.1.20)

which is the ratio of the net power output to the input heat rate. Balmer [1990] gives a comprehensive
discussion on the efficiency of thermodynamic cycles.

Some Thermodynamic Systems

The most common thermodynamic systems are those used by engineers in generating electricity for
utilities and for heating or refrigeration/cooling purposes.

Modern power systems employ after Rankine cycles, and a typical Rankine cycle is shown in
Figure 2.1.4(a). In this cycle, the working fluid is compressed by the pump and is sent to the boiler where
heat QH is added to the working fluid, bringing it to a saturated (or superheated) vapor state. The vapor
is then expanded through the turbine, generating shaft work. The mixture of vapor and liquid exiting
the turbine is condensed by passing through the condenser. The fluid coming out of the condenser is
then pumped to the boiler, closing the cycle. The enthalpy-entropy (h-s) diagram for the Rankine cycle
is shown in Figure 2.1.4(b). The dashed line 3→4 in Figure 2.1.4(b) represents actual expansion of the
steam through the turbine, whereas the solid line 3→4s represents an isentropic expansion through the
turbine.

In utility power plants, the heat source for the boiler can vary depending on the type of generating
plant. In geothermal power plants, for example, water at temperatures as high as 380°C is pumped from
geothermal resources located several hundred meters below the earth’s surface, and the water’s energy is
transferred to the working fluid in a boiler.

The other commonly used thermodynamic cycle is the refrigeration cycle (heat-pump cycle). As stated
earlier, a heat engine and a heat pump both operate under the same principles except that their thermo-
dynamic processes are reversed. Figures 2.1.2 and 2.1.3 provide detailed information about the heat-
pump cycle. This cycle is sometimes called the reversed Rankine cycle.

Modified Rankine Cycles
Modifying the Rankine cycle can improve the output work considerably. One modification usually
employed in large central power stations is introducing a reheat process into the Rankine cycle. In this
modified Rankine cycle, as shown in Figure 2.1.5(a), steam is first expanded through the first stage of
the turbine. The steam discharging from the first stage of the turbine is then reheated before entering
the second stage of the turbine. The reheat process allows the second stage of the turbine to have a greater
enthalpy change. The enthalpy-versus-entropy plot for this cycle is shown in Figure 2.1.5(b), and this
figure should be compared to Figure 2.1.4(b) to further appreciate the effect of the reheat process. Note

FIGURE 2.1.4 Typical Rankine cycle and its h-s diagram.
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that in the reheat process, the work output per pound of steam increases; however, the efficiency of the
system may be increased or reduced depending on the reheat temperature range.

Another modification also employed at large power stations is called a regeneration process. The
schematic representation of a Rankine cycle with a regeneration process is shown in Figure 2.1.6(a), and
the enthalpy-versus-entropy plot is shown in Figure 2.1.6(b). In this process, a portion of the steam (at
point 6) that has already expanded through the first stage of the turbine is extracted and is mixed in an
open regenerator with the low-temperature liquid (from point 2) that is pumped from the condenser
back to the boiler. The liquid coming out of the regenerator at point 3 is saturated liquid that is then
pumped to the boiler.

Example 2.1.1

A geothermal heat pump, shown in Figure 2.1.7, keeps a house at 24°C during the winter. The
geothermal resource temperature is –5°C. The amount of work required to operate the heat pump for
a particular month is 106 kilojoules (kJ). What is the maximum heat input to the house during that
1-month period?

FIGURE 2.1.5 (a) Rankine cycle with a reheat process. (b) The h-s plot for the modified Rankine cycle of
Figure 2.1.5(a).
© 2001 by CRC Press LLC



Solution:

The energy balance for the system gives

(2.1.21)

FIGURE 2.1.6 (a) Rankine cycle with regeneration process, and (b) its h-s diagram.
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Equation (2.1.7) gives the entropy change for the system:

(2.1.22)

where, from Eq. (2.1.22), we can get an expression for QL:

(2.1.23)

Substituting for QL from Eq. (2.1.21), we get an expression for QH:

The maximum QH is obtained when ∆S = 0; therefore,

(2.1.24)

and substituting the actual values yields

Example 2.1.2

Calculate the maximum COP for the heat pump of Example 2.1.1.

Solution

FIGURE 2.1.7 Ground-source heat pump.
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Example 2.1.3

A simple heat-pump system is shown in Figure 2.1.2. The working fluid in the closed loop is R-22.
The p-h diagram of Figure 2.1.2 shows the thermodynamic process for the working fluid. The following
data represent a typical operating case.

(a) Determine the COP for this heat pump assuming isentropic compression, s2 = s3.

(b) Determine the COP by assuming a compressor isentropic efficiency of 70%.

Solution:

First, the thermodynamic properties at each station can be found using the CRC Mechanical Engineer’s
Handbook.

State Point #1:

The evaporation of working fluid R-22 occurs at a constant pressure (between points 1 and 2). This
pressure can be obtained from the saturated liquid/vapor table of properties for R-22 at T1 = –5°C
(23°F), which is p1 = 422 kPa (61.2 psia). At point 1, the quality is x1 = 0.17. Therefore, the enthalpy
and entropy at this point can be obtained from:

where hf1
 = 39.36 kJ/kg, hfg1

 – hf1 = hg1
 = 208.85 kJ/kg, sf1

 = 0.1563 kJ/kg K, and sfg1
 = sg1

 – sf1
 =

0.7791 kJ/kg K.

The quantities listed are read from the table of properties for R-22. Using these properties, we obtain:

We then find the state properties at point 3, because they will be used to find the quality of the mixture
at point 2.

State Point #3:

At point 3, the working fluid is saturated vapor at T3 = 24°C (75°F). From the table of properties, the
pressure, enthalpy, and entropy at this point are p3 = 1,014 kPa (147 psia), h3 = 257.73 kJ/kg, and s3 =
0.8957 kJ/kg K.

State Point #2:

The temperature at this point is T2 = –5°C (23°F), and because we are assuming an isentropic com-
pression, the entropy is s2 = s3 = 0.8957 kJ/kg K. The quality of the mixture at point 2 can be calculated
from
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where sfg2
 = sg2

 – sf2
, and the quantities sg2

 and sf2
 can be obtained from the table of properties at T2 =

–5°C (23°F).

Note that the saturation properties for points 1 and 2 are the same because both points have the same
pressure and temperature. Therefore,

Knowing the quality at point 2, the enthalpy at point 2 can be calculated:

State Point #4

At point 4, we have saturated liquid at T4 = 24°C (75°F). Therefore, from the table of properties, s4 =
0.2778 kJ/kg K and h4 = 74.16 kJ/kg.

(a) The coefficient of performance for a heat pump is

(b) If the isentropic efficiency is 70%, the p-h diagram is as shown in Figure 2.1.8. The isentropic
efficiency for the compressor is defined as

FIGURE 2.1.8 The p-h diagram for a heat-pump cycle with a 70% isentropic efficiency for the compressor.
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Using this relationship, h3 can be calculated as follows:

Therefore, the COP is

Advanced Thermodynamic Power Cycles
Over the past 50 years, many technological advances have improved the performance of power plant
components. Recent developments in exotic materials have allowed the design of turbines that can operate
more efficiently at higher inlet temperatures and pressures. Simultaneously, innovative thermodynamic
technologies (processes) have been proposed and implemented that take advantage of improved turbine
isentropic and mechanical efficiencies and allow actual operating thermal efficiencies of a power station
to approach 50%. These improved technologies include (1) modification of existing cycles (reheat and
regeneration) and (2) use of combined cycles. In the previous section, we discussed reheat and regener-
ation techniques. In the following paragraphs, we give a short overview of the combined-cycle technol-
ogies and discuss their operation.

The basic gas-turbine or Brayton cycle is shown in Figure 2.1.9. In this cycle, ambient air is pressurized
in a compressor and the compressed air is then forwarded to a combustion chamber, where fuel is
continuously supplied and burned to heat the air. The combustion gases are then expanded through a
turbine to generate mechanical work. The turbine output runs the air compressor and a generator that
produces electricity.

The exhaust gas from such a turbine is very hot and can be used in a bottoming cycle added to the
basic gas-turbine cycle to form a combined cycle. Figure 2.1.10 depicts such a combined cycle where a
heat-recovery steam generator (HRSG) is used to generate steam required for the bottoming (Rankine)

FIGURE 2.1.9 A basic gas-turbine or Brayton-cycle representation.

FIGURE 2.1.10 A combined cycle known as the steam-and-gas-turbine cycle.
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cycle. The high-temperature exhaust gases from the gas-turbine (Brayton) cycle generate steam in the
HRSG. The steam is then expanded through the steam turbine and condensed in the condenser. Finally,
the condensed liquid is pumped to the HRSG for heating. This combined cycle is referred to as a steam
and gas turbine cycle.

Another type of bottoming cycle proposed by Kalina [1984] uses a mixture of ammonia and water as
a working fluid. The multicomponent mixture provides a boiling process that does not occur at a constant
temperature; as a result, the available heat is used more efficiently. In addition, Kalina employs a distil-
lation process or working-fluid preparation subsystem that uses the low-temperature heat available from
the mixed-fluid turbine outlet. The working-fluid mixture is enriched by the high-boiling-point com-
ponent; consequently, condensation occurs at a relatively constant temperature and provides a greater
pressure drop across the turbine. The use of multicomponent working fluids in Rankine cycles provides
variable-temperature boiling; however, the condensation process will have a variable temperature as well,
resulting in system inefficiencies. According to Kalina, this type of bottoming cycle increases the overall
system efficiency by up to 20% above the efficiency of the combined-cycle system using a Rankine
bottoming cycle. The combination of the cycle proposed by Kalina and a conventional gas turbine is
estimated to yield thermal efficiencies in the 50 to 52% range.

2.1.2 Fundamentals of Heat Transfer

In Section 2.1, we discussed thermodynamic laws and through some examples we showed that these laws
are concerned with interaction between a system and its environment. Thermodynamic laws are always
concerned with the equilibrium state of a system and are used to determine the amount of energy
required for a system to change from one equilibrium state to another. These laws do not quantify the
mode of the energy transfer or its rate. Heat transfer relations, however, complement thermodynamic
laws by providing rate equations that relate the heat transfer rate between a system and its environment.

Heat transfer is an important process that is an integral part of our environment and daily life. The
heat-transfer or heat-exchange process between two media occurs as a result of a temperature difference
between them. Heat can be transferred by three distinct modes: conduction, convection, and radiation.
Each one of these heat transfer modes can be defined by an appropriate rate equation presented below:

Fourier’s Law of Heat Conduction—represented here by Eq. (2.1.25) for the one-dimensional steady-
state case:

(2.1.25)

Newton’s Law of Cooling—which gives the rate of heat transfer between a surface and a fluid:

(2.1.26)

where h is the average heat-transfer coefficient over the surface with area A.
Stefan–Boltzmann’s Law of Radiation—which is expressed by the equation:

(2.1.27)

Conduction Heat Transfer

Conduction is the heat-transfer process that occurs in solids, liquids, and gases through molecular
interaction as a result of a temperature gradient. The energy transfer between adjacent molecules occurs
without significant physical displacement of the molecules. The rate of heat transfer by conduction can
be predicted by using Fourier’s law, where the effect of molecular interaction in the heat-transfer medium
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is expressed as a property of that medium and is called the thermal conductivity. The study of conduction
heat transfer is a well-developed field where sophisticated analytical and numerical techniques are used
to solve many problems in buildings including heating and cooling load calculation.

In this section, we discuss basics of steady-state one-dimensional conduction heat transfer through
homogeneous media in cartesian and cylindrical coordinates. Some examples are provided to show the
application of the fundamentals presented, and we also discuss fins or extended surfaces.

One-Dimensional Steady-State Heat Conduction
Fourier’s law, as represented by Eq. (2.1.25), states that the rate of heat transferred by conduction is
directly proportional to the temperature gradient and the surface area through which the heat is flowing.

The proportionality constant k is the thermal conductivity of the heat-transfer medium. Thermal
conductivity is a thermophysical property and has units of W/m K in the SI system, or Btu/h ft °F in the
English system of units. Thermal conductivity can vary with temperature, but for most materials it can
be approximated as a constant over a limited temperature range. A graphical representation of Fourier’s
law is shown in Figure 2.1.11.

Equation (2.1.25) is only used to calculate the rate of heat conduction through a one-dimensional
homogenous medium (uniform k throughout the medium). Figure 2.1.12 shows a section of a plane wall
with thickness L, where we assume the other two dimensions of the wall are very large compared to L.
One side of the wall is at temperature T1, and the other side is kept at temperature T2, where T1 > T2.
Integrating Fourier’s law with constant k and A, the rate of heat transfer through this wall is

(2.1.28)

where k is the thermal conductivity of the wall.

The Concept of Thermal Resistance
Figure 2.1.12 also shows the analogy between electrical and thermal circuits. Consider an electric current
I flowing through a resistance Re, as shown in Figure 2.1.12. The voltage difference ∆V = V1 – V2 is the
driving force for the flow of electricity. The electric current can then be calculated from

(2.1.29)

FIGURE 2.1.11 The sign convention for conduction heat flow.
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Like electric current flow, heat flow is governed by the temperature difference, and it can be calculated
from

(2.1.30)

where, from Eq. (2.1.28), R = L/Ak and is called thermal resistance. Following this definition, the thermal
resistance for convection heat transfer given by Newton’s Law of Cooling becomes R = 1/(hA). Thermal
resistance of composite walls (plane and cylindrical) has been discussed by Kakac and Yener [1988],
Kreith and Bohn [1993], and Bejan [1993]. The following example shows how we can use the concept
of thermal resistance in solving heat-transfer problems in buildings.

Example 2.1.4

One wall of an uninsulated house, shown in Figure 2.1.13, has a thickness of 0.30 m and a surface
area of 11 m2. The wall is constructed from a material (brick) that has a thermal conductivity of 0.55
W/m K. The outside temperature is –10°C, while the house temperature is kept at 22°C. The convection
heat-transfer coefficient is estimated to be ho = 21 W/m2 K in the outside and hi = 7 W/m2 K in the
inside. Calculate the rate of heat transfer through the wall, as well as the surface temperature at either
side of the wall.

Solution:

The conduction thermal resistance is

Note that the heat-transfer rate per unit area is called heat flux and is given by

FIGURE 2.1.12 Analogy between thermal and electrical circuits for steady-state conduction through a plane wall.
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In this case, the resistance to heat transfer over a 1–m by 1–m area of the wall is

The convection resistances for inside and outside, shown in Figure 2.1.13, are

Note that the highest resistance is provided by conduction through the wall. The total heat flow can
be calculated from

The surface temperatures can then be calculated by using the electric analogy depicted in Figure 2.1.13.
For the inside surface temperature,

FIGURE 2.1.13 Heat loss through a plane wall.
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or

Similarly, for the outside surface temperature:

Conduction Through Hollow Cylinders
A cross section of a long hollow cylinder such as pipe insulation with internal radius ri and external
radius ro is shown in Figure 2.1.14. The internal surface of the cylinder is at temperature Ti and the
external surface is at To, where Ti > To. The rate of heat conduction in a radial direction is calculated by

(2.1.31)

where L is the length of the cylinder that is assumed to be long enough so that the end effects may be
ignored. From Eq. (2.1.31) the resistance to heat flow in this case is

(2.1.32)

Equation (2.1.31) can be used to calculate the heat loss through insulated pipes, as presented in the
following example.

Example 2.1.5

The refrigerant of the heat pump discussed in Example 2.1.3 is circulating through a thin-walled
copper tube of radius ri = 6 mm, as shown in Figure 2.1.15. The refrigerant temperature is Ti, ambient
temperature is T∞, and Ti < T∞. The outside convection heat-transfer coefficient is ho = 7 W/m2 K.

FIGURE 2.1.14 Conduction through hollow cylinders.
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(a) If we decide to insulate this tube, what would be the optimum thickness of the insulation?

(b) Show the behavior of heat flow through the tube at different insulation thicknesses such as 0, 3,
6, 10, 15, and 20 mm, and plot the results for /L versus radius r. Assume an insulation material with
thermal conductivity k = 0.06 W/m K.

Solution:

(a) In thermal analysis of radial systems, we must keep in mind that there are competing effects
associated with changing the thickness of insulation. Increasing the insulation thickness increases the
conduction resistance; however, the area available for convection heat transfer increases as well, result-
ing in reduced convection resistance. To find the optimum radius for insulation, we first identify the
major resistances in the path of heat flow. Our assumptions are that (1) the tube wall thickness is small
enough that conduction resistance can be ignored, (2) heat transfer occurs at steady state, (3) insulation
has uniform properties, and (4) radial heat transfer is one-dimensional

The resistances per unit length are

where r, the outer radius of insulation, is unknown. The total resistance is

and the rate of heat flow per unit length is

FIGURE 2.1.15 Heat loss through a pipe with insulation.
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The optimum thickness of the insulation is obtained when the total heat flow is minimized or when
the total resistance is maximized. By differentiating Rt with respect to r, we obtain the condition under
which Rt is maximum (or minimum). Therefore,

from which we obtain r = k/ho. To determine if Rt is maximum or minimum at r = k/ho, we take the
second derivative and find its quantity at r = k/ho.

Therefore, Rt is a minimum at r = k/ho, which means that the heat flow is maximum at this insulation
radius. An optimum radius of insulation does not exist; however, the radius obtained in this analysis
is referred to as the critical radius, rc, and this radius should be avoided when selecting insulation for
pipes. The economic optimum insulation can be found using techniques in Chapter 3.2.

(b) For this example the critical radius is rc = k/ho = 0.06 W/m K/7 W/m2 K = 0.0086 m = 8.6 mm,
and ri = 6 mm, so rc > ri. This means that by adding insulation, we will increase the heat loss from
the tube. Using the expression for Rt, we can plot the total resistance versus the insulation thickness
as shown in Figure 2.1.16. Note that the minimum total resistance occurs at an insulation thickness
of about 0.025 m (corresponding to the rc calculated earlier). Also note that as the insulation thickness
is increased, the conduction resistance increases; however, the convection resistance decreases as listed
in Table 2.1.1.

Convection Heat Transfer

Energy transport (heat transfer) in fluids usually occurs by the motion of fluid particles. In many
engineering problems, fluids come into contact with solid surfaces that are at different temperatures than
the fluid. The temperature difference and random/bulk motion of the fluid particles result in an energy
transport process known as convection heat transfer. Convection heat transfer is more complicated than
conduction because the motion of the fluid, as well as the process of energy transport, must be studied

FIGURE 2.1.16 Total resistance versus insulation thickness for an insulated tube.
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simultaneously. Convection heat transfer can be created by external forces such as pumps and fans in a
process referred to as forced convection. In the absence of external forces, the convection process may
result from temperature or density gradients inside the fluid; in this case, the convection heat-transfer
process is referred to as natural convection. We will discuss this type of convection in more detail in the
next section. There are other instances where a heat-transfer process consists of both forced and natural
convection modes and they are simply called mixed-convection processes.

The main unknown in the convection heat-transfer process is the heat-transfer coefficient (see
Eq. 2.1.26). Figure 2.1.17 serves to explain the convection heat-transfer process by showing the temper-
ature and velocity profiles for a fluid at temperature T∞ and bulk velocity U∞ flowing over a heated
surface. As a result of viscous forces interacting between the fluid and the solid surface, a region known
as velocity boundary layer is developed in the fluid next to the solid surface. In this region the fluid
velocity is zero at the surface and increases to the bulk fluid velocity u∞. Because of the temperature
difference between the fluid and the surface, a region known as temperature boundary layer also develops
next to the surface, where the temperature at the fluid varies from Tw (surface temperature) to T∞ (bulk
fluid temperature). The velocity-boundary-layer thickness δ and temperature-boundary-layer thickness
δt and their variation along the surface are shown in Figure 2.1.17.

Depending on the thermal diffusivity and kinematic viscosity of the fluid, the velocity and temperature
boundary layers may be equal or may vary in size. Because of the no-slip condition at the solid surface,
the fluid next to the surface is stationary; therefore, the heat transfer at the interface occurs only by
conduction.

If the temperature gradient were known at the interface, the heat exchange between the fluid and the
solid surface could be calculated from Eq. (2.1.25), where k in this case is the thermal conductivity of
the fluid and dT/dx (or dT/dy in reference to Figure 2.1.17) is the temperature gradient at the interface.
However, the temperature gradient at the interface depends on the macroscopic and microscopic motion
of fluid particles. In other words, the heat transferred from or to the surface depends on the nature of
the flow field.

TABLE 2.1.1 Effect of Insulation Thickness on Various Thermal Resistances

Insulation
Thickness

(m)

Outer
Radius, r

(m)

Convection
Resistance,
R2, (K/W)

Conduction
Resistance,
R1, (K/W)

Total
Resistance,
Rt, (K/W)

0 0.0060 3.79 0 3.79
0.0010 0.0070 3.25 0.41 3.66
0.0015 0.0075 3.03 0.59 3.62
0.0020 0.0080 2.84 0.76 3.60
0.0025 0.0085 2.67 0.92 3.59
0.0030 0.0090 2.53 1.07 3.60
0.0035 0.0095 2.39 1.22 3.61
0.0040 0.0100 2.27 1.36 3.63
0.0060 0.0120 1.89 1.84 3.73

FIGURE 2.1.17 Temperature and velocity profiles for convection heat-transfer process over a heated surface.
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Therefore, in solving convection problems, engineers need to determine the relationship between the
heat transfer through the solid-body boundaries and the temperature difference between the solid-body
wall and the bulk fluid. This relationship is given by Eq. (2.1.26), where h is the convection coefficient
averaged over the solid surface area. Note that h depends on the surface geometry and the fluid velocity,
as well as on the fluid’s physical properties. Therefore, depending on the variation of the above quantities,
the heat-transfer coefficient may change from one point to another on the surface of the solid body. As
a result, the local heat-transfer coefficient may be different than the average heat-transfer coefficient.
However, for most practical applications, engineers are mainly concerned with the average heat-transfer
coefficient, and in this section we will use only average heat-transfer coefficients unless otherwise stated.

Natural-Convection Heat Transfer
Natural-convection heat transfer results from density differences within a fluid. These differences may
result from temperature gradients that exist within a fluid. When a heated (or cooled) body is placed in
a cooled (or heated) fluid, the temperature difference between the fluid and the body causes heat flow
between them, resulting in a density gradient inside the fluid. As a result of this density gradient, the
low-density fluid moves up and the high-density fluid moves down. The heat-transfer coefficients (and
consequently, the rate of heat transfer in natural convection) are generally less than that in forced
convection because the driving force for mixing of the fluid is less in natural convection.

Natural-convection problems can be divided into two categories: external natural convection and
internal natural convection. Natural-convection heat transfer from the external surfaces of bodies of
various shapes has been studied by many researchers. Experimental results for natural-convection heat
transfer are usually correlated by an equation of the type

(2.1.33)

where the Nusselt number, Nu, provides a measure of the convection heat transfer occurring between
the solid surface and the fluid. Knowing Nu, the convection heat-transfer coefficient, h, can be calculated.
Note that in Eq. (2.1.33), k is the fluid conductivity and Ra is the Rayleigh number, which represents
the ratio of buoyancy force to the rate of change of momentum. The Rayleigh number is given by

(2.1.34)

where β is the coefficient of thermal expansion equal to 1/T (T is the absolute temperature expressed in
Kelvin) for an ideal gas, L is a characteristic length, ν is the kinematic viscosity of the fluid, and α is its
thermal diffusivity. A comprehensive review of the fundamentals of natural-convection heat transfer is
provided by Raithby and Hollands [1985]. Table 2.1.2 gives correlations for calculating heat transfer from
the external surfaces of some common geometries.

Experiments conducted by Hassani and Hollands [1989], Sparrow and Stretton [1985], Yovanovich
and Jafarpur [1993], and others have shown that the external natural-convection heat transfer from
bodies of arbitrary shape exhibit Nu-Ra relationships similar to regular geometries such as spheres and
short cylinders. An extensive correlation for predicting natural-convection heat transfer from bodies of
arbitrary shape was developed by Hassani and Hollands [1989]; it is useful for most situations on the
surfaces of buildings.

Internal natural-convection heat transfer occurs in many engineering problems such as heat loss from
building walls, electronic equipment, double-glazed windows, and flat-plate solar collectors. Some of
the geometries and their corresponding Nusselt numbers are listed in Table 2.1.3. Anderson and Kreith
[1987] provide a comprehensive summary of natural-convection processes that occur in various solar
thermal systems.
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TABLE 2.1.2 Natural-Convection Correlations for External Flows
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TABLE 2.1.2 (continued) Natural-Convection Correlations for External Flows
Note: Ra is Rayleigh number, Pr is Prandtl number, and Nu is Nusselt number.
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TABLE 2.1.3 Natural-Convection Correlations for Internal Flows
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TABLE 2.1.3 (continued) Natural-Convection Correlations for Internal Flows
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The natural-convection heat transfer for long concentric horizontal cylinders and concentric spheres
has been studied by Raithby and Hollands [1985]. Their proposed correlations are listed in Table 2.1.3,
where Do and Di represent the diameters of outer cylinder (or sphere) and inner cylinder (or sphere),
respectively. The Rayleigh number is based on the temperature difference across the gap and a charac-
teristic length defined as b = (Do – Di)/2. The effective thermal conductivity keff in their correlation is
the thermal conductivity that a stationary fluid in the gap must have to transfer the same amount of
heat as the moving fluid. Raithby and Hollands also provide correlations for natural-convection heat
transfer between long eccentric horizontal cylinders and eccentric spheres.

Example 2.1.6

One component of the total heat loss from a room is the heat loss through a single-pane window in
the room, as shown in Figure 2.1.18. The inside temperature is kept at Ti = 22°C, and the outside
temperature is To = – 5°C. The window height H is 0.5 m, and its width is 2 m. The weather is calm,
and there is no wind blowing. Assuming uniform glass temperature Tw, calculate the heat loss through
the window.

Solution:

The air flow pattern next to the window is shown in Figure 2.1.18. When warm room air approaches
or contacts the window, it loses heat and its temperature drops. Because this cooled air next to the
window is denser and heavier than the room air at that height, it starts moving down and is replaced
by warmer room air at the top of the window. A similar but opposite air movement occurs at the
outside of the window. The total heat loss can be calculated from

(2.1.35)

where hi and ho are the average natural-convection heat-transfer coefficients for inside and outside,
respectively. Using the correlation recommended by Fujii and Imura [1972] for a vertical plate with
constant temperature Tw (from Table 2.1.2) and substituting for angle of inclination θ = 0, we get

where

and H is the height of the window pane. Note that the temperature difference in the expression for
Rayleigh number depends on the medium for which the heat-transfer coefficient is sought. For
example, for calculating the interior surface coefficient hi, we write

FIGURE 2.1.18 Heat loss through a single-pane window.
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(2.1.36)

and for calculating ho, we write

(2.1.37)

Note that all the properties in Eqs. (2.1.36) or (2.1.37) should be calculated at film temperature Tf =
(Ti + Tw)/2 or Tf = (To + Tw)/2. To calculate  and air properties, we need to know Tw. To estimate
Tw, we assume that air properties over the temperature range of interest to this problem do not change
significantly (refer to air property tables to verify this assumption). Using this assumption, we find
the ratio between Eqs. (2.1.36) and (2.1.37) as

(2.1.38)

which provides a relationship between ho, hi, and Tw. Another equation of this kind can be obtained
from Eq. (2.1.35):

(2.1.39)

Solving Eqs. (2.1.38) and (2.1.39), we can show that

Now, by calculating hi or ho and substituting into Eq. (2.1.35), the total heat transfer can be calculated.
In this case, we choose to solve for ho. Therefore, the air properties should be calculated at

Air properties at Tf = 1.75°C are k = 0.0238 W/m K, ν = 14.08 × 10–6 m2/s, α = 19.48 × 10–6 m2/s, and
β = 1/Tf = 0.00364 K–1. Using these properties, the Rayleigh number is

From Eq. (2.1.37), we obtain
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Example 2.1.7

The single-pane window of the previous example is replaced by a double-pane window as shown in
Figure 2.1.19. The outside and inside temperatures are the same as in Example 2.1.6 (Ti = 22°C, To =
–5°C). The glass-to-glass spacing is L = 20 mm, the window height H = 0.5 m, and the width is 2 m.
Find the heat loss through this window and compare it to the heat loss through the single-pane window.
Ignore conduction resistance through the glass.

Solution:

The thermal circuit for the system is shown in Figure 2.1.19. Temperatures T1 and T2 are unknown
and represent the average glass temperature (i.e., we assume that the glass temperature is uniform
over the entire surface because of the low thermal resistance of glass). As in Example 2.1.6, we first
estimate temperatures T1 and T2. The rate of heat transfer is

(2.1.40)

The heat-transfer coefficients h1 and h3 for natural-convection heat transfer between the glass surface
and interior/exterior can be calculated using Eqs. (2.1.36) and (2.1.37), and the ratio between h1 and
h3 is

(2.1.41)

Another relationship between h1, h3, T1, and T2, is obtained from Eq. (2.1.40):

(2.1.42)

Solving Eqs. (2.1.41) and (2.1.42), we get:

(2.1.43)

We need an additional equation that provides a relationship between T1 and T2, and we obtain this
equation from the correlation that expresses the natural-convection heat transfer in the enclosed area
of the double-pane window. We choose the correlation recommended by MacGregor and Emery [1969]
from Table 2.1.3:

FIGURE 2.1.19 Heat loss through a double-pane window.
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(2.1.44)

where

Using some mathematical manipulations Eq. (2.1.44) can be written as

(2.1.45)

where L/H = 0.04. The heat-transfer coefficient h1 can be calculated from Eq. (2.1.36) (used to calculate
hi) and can be written as

(2.1.46)

where the Rayleigh number has been written in terms of (Ti – To) instead of (Ti – T1). Substituting
for L/H, the ratio between h2 and h1 is

(2.1.47)

Note that in finding h2/h1, we have assumed that the properties do not change much in the temperature
range of interest. From Eq. (2.1.40), we have

(2.1.48)

Therefore, solving Eqs. (2.1.47) and (2.1.48), we obtain T1 in terms of Ti and To:

(2.1.49)

Substituting for Ti and To, we obtain T1 = 14.2°C, and substituting for T1, Ti, and To in Eq. (2.1.43),
we get T2 = 2.8°C. Knowing T1 and T2, we can calculate RaL. To calculate RaL, we should obtain air
properties at Tf = (T1 + T2)/2 = 8.5°C, which are k = 0.0244 W/m K, ν = 14.8 × 10–6 m2/s, α = 20.6 ×
10–6 m2/s, and β = 1/Tf = 0.00355 K–1. Therefore,

h2 from Eq. (2.1.44) is
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and

Comparing the heat loss to that of Example 2.1.6 for a single-pane window, we note that the heat loss
through a single-pane window is almost twice as much as through a double-pane window for the same
inside and outside conditions.

Forced-Convection Heat Transfer

Forced-convection heat transfer is created by auxiliary means such as pumps and fans or natural phe-
nomena such as wind. This type of process occurs in many engineering applications such as flow of hot
or cold fluids inside ducts and various thermodynamic cycles used for refrigeration, power generation,
and heating or cooling of buildings. As with natural convection, the main challenge in solving forced-
convection problems is to determine the heat-transfer coefficient.

The forced-convection heat transfer processes can be divided into two categories: external-flow forced
convection and internal-flow forced convection. External forced-convection problems are important
because they occur in various engineering applications such as heat loss from external walls of buildings
on a windy day, from steam radiators, from aircraft wings, or from a hot wire anemometer. To solve
these problems, researchers have conducted many experiments to develop correlations for predicting the
heat transfer. The experimental results obtained for external forced-convection problems are usually
expressed or correlated by an equation of the form

where f and g represent the functional dependance of the Nusselt number on the Reynolds and Prandtl
numbers. The Reynolds number is a nondimensional number representing the ratio of inertia to viscous
forces, and the Prandtl number is equal to ν/α, which is the ratio of momentum diffusivity to thermal
diffusivity.

Table 2.1.4a lists some of the important correlations for calculating forced-convection heat transfer
from external surfaces of common geometries. Listed in Table 2.1.4a is the correlation for the forced-
convection heat-transfer to or from a fluid flowing over a bundle of tubes, which is relevant to many
industrial applications such as the design of commercial heat exchangers. Figures 2.1.20 and 2.1.21 show
different configurations of tube bundles in cross-flow whose forced-convection correlations are presented
in Table 2.1.4a.

Forced-convection heat transfer in confined spaces is also of interest and has many engineering
applications. Flow of cold or hot fluids through conduits and heat transfer associated with that process
is important in many HVAC engineering processes. The heat transfer associated with internal forced
convection can be expressed by an equation of the form

where f(Re), g(Pr), and e(x/DH) represent the functional dependance on Reynolds number, Prandtl
number, and x/DH, respectively. The functional dependance on x/DH becomes important for short ducts
in laminar flow. The quantity DH is called the hydraulic diameter of the conduit and is defined as

(2.1.50)

and is used as the characteristic length for Nusselt and Reynolds numbers.
Fully developed laminar flow through ducts of various cross-section has been studied by Shah and

London [1978], and they present analytical solutions for calculating heat transfer and friction coefficients.

˙   .  Q h A T T= −( ) =2 1 2 22 46 W.

Nu = Re Prf g( ) ( ) ,

Nu = Re Prf g e x DH( ) ( ) ( )  ,

DH = ×4
flow cross-sectional area

wetted perimeter
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ubscript “s” are calculated at Ts (surface temperature).
TABLE 2.1.4(a) (continued) Forced-Convection Heat-Transfer Correlations for External Flows*

* All properties calculated at (T∞ + Ts)/2 unless otherwise stated under the column “condition.” Properties with the s



Solving internal tube-flow problems requires knowledge of the nature of the tube-surface thermal con-
ditions. Two special cases of tube-surface conditions cover most engineering applications: constant tube-
surface heat flux and constant tube-surface temperature. The axial temperature variations for the fluid
flowing inside a tube are shown in Figure 2.1.22. Figure 2.1.22(a) shows the mean fluid-temperature
variations inside a tube with constant surface heat flux. Note that the mean fluid temperature, Tm (x),
varies linearly along the tube. Figure 2.1.22(b) shows the mean fluid-temperature variations inside a tube
with constant surface temperature. Some of the recommended correlations for forced convection of
incompressible flow inside tubes and ducts are listed in Table 2.1.5.

TABLE 2.1.4(b) Constants for Noncircular Cylinders in Cross Flow of a Gas

FIGURE 2.1.20 In-line tube arrangement for tube bundle in cross-flow forced convection.
© 2001 by CRC Press LLC



Now that we have reviewed both natural- and forced-convection heat-transfer processes, it is useful
to compare the order of magnitude of the heat-transfer coefficient for both cases. Table 2.1.6 provides
some approximate values of convection heat-transfer coefficients.

Example 2.1.8

A solar-thermal power plant is depicted in Figure 2.1.23. In this system, solar radiation is reflected
from tracking mirrors onto a stationary receiver. The receiver consists of a collection of tubes that are
radiatively heated, and a working fluid (coolant) flows through them; the heat absorbed by the working
fluid is then used to generate electricity. Consider a central-receiver system that consists of several
horizontal circular tubes each with an inside diameter of 0.015 m. The working fluid is molten salt
that enters the tube at 400°C at a rate of 0.015 kg/s. Assume that the average solar flux approaching
the tube is about 10,000 W/m2.

FIGURE 2.1.21 Staggered tube arrangement for tube bundle in cross-flow forced convection.

FIGURE 2.1.22 Axial fluid temperature variations for heat transfer in a tube for (a) constant surface heat flux, and
(b) constant surface temperature.
© 2001 by CRC Press LLC
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Sieder and Tate [1936]

 Kays and London [1984]
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TABLE 2.1.5 Forced-Convection Correlations for Incompressible Flow Inside Tubes and Ducts*,†

Configuration Correlation Restriction

Fully developed laminar flow in 
long tubes:

a. With uniform wall temperature Pr > 0.6

b. With uniform heat flux Pr > 0.6

c. Friction factor (liquids)

d. Friction factor (gas)

Laminar flow in short tubes and 
ducts with uniform wall 
temperature

Fully developed turbulent flow 
through smooth, long tubes and 
ducts:

a. Nusselt number

b. Friction factor

* All physical properties are evaluated at the bulk temperature Tb except µs, which is evaluated at the surfac
† Incompressible flow correlations apply to gases and vapors when average velocity is less than half the spee
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(a) Find the necessary length of the tube to raise the working-fluid temperature to 500°C at the exit.

(b) Determine the tube-surface temperature at the exit.

Solution:

We will assume steady-state conditions, fully developed flow, and incompressible flow with constant
properties. The axial temperature variations for heat transfer in a tube for constant heat flux is shown
in Figure 2.1.22(a).

(a) The heat capacity of molten salt at Tm = (Ti + To)/2 = 450°C is cp = 1,520 J/kg K. The total heat
transferred to the working fluid is q″At = cp (To – Ti), where q″ is the solar flux and At = πDL is the
surface area of the tube (assuming that the solar flux is incident over the entire perimeter of the tube).
Therefore,

(b) Molten salt properties at To = 500°C are µ = 1.31 × 10–3 Ns/m2, k = 0.538 W/m K, and Pr = 3.723.
The peak tube-surface temperature can be obtained from q″ = h(Ts – To), where h is the local convection
coefficient at the exit. To find h, the nature of the flow must first be established by calculating the
Reynolds number:

TABLE 2.1.6 Order of Magnitude of Convective Heat-Transfer Coefficients hc

W/m2 K Btu/h ft2°F

Air, free convection 6–30 1–5
Superheated steam or air, forced convection 3–300 5–50
Oil, forced convection 60–1800 10–300
Water, forced convection 300–18,000 50–3000
Water, boiling 3000–60,000 500–10,000
Steam, condensing 6000–120,000 1000–20,000

FIGURE 2.1.23 A solar-thermal central-receiver system.
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Because Re < 2,300, the flow inside the tube is laminar. Therefore, from Table 2.1.5, NuD = hD/k =
4.36, and

The surface temperature at the exit is

Extended Surfaces or Fins
According to Eq. (2.1.25), the rate of heat transfer by conduction is directly proportional to the heat flow
area. To enhance the rate of heat transfer, we can increase the effective heat-transfer surface area. Based
on this concept, extended surfaces or fins are widely used in industry to increase the rate of heat transfer
for heating or cooling purposes. Various types of extended surfaces are shown in Figure 2.1.24. The
simplest type of extended surface is the fin with a uniform cross-section, as shown in Figure 2.1.24(d).
The temperature distribution and fin heat-transfer rate can be found by solving a differential equation
that expresses energy balance on an infinitesimal element in the fin as given by

(2.1.51)

where P is the cross-sectional perimeter of the fin, k is the thermal conductivity of the fin, A is the cross-
sectional area of the fin, and h is the mean convection heat-transfer coefficient between the fin and its
surroundings. To solve Eq. (2.1.51), we need two boundary conditions: one at x = 0 (base of the fin) and
the other at x = L (tip of the fin). The boundary condition used at the base of the fin is usually T(x = 0) =
Tb, the temperature of the main body to which the fin is attached. The second boundary condition at
the tip of the fin (x = L) may take several forms:

1. The fin temperature approaches the environment temperature:

2. There is no heat loss from the end surface of the fin (insulated end):

3. The fin-end surface temperature is fixed:

4. There is convection heat loss from the end surface of the fin:
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Using the boundary condition at x = 0 along with one of the four boundary conditions for x = L, we
can solve Eq. (2.1.51) and obtain the temperature distribution for a fin with a uniform cross section.
Knowing the temperature distribution of the fin, the fin heat-transfer rate qfin can be obtained by applying
Fourier’s law at the base of the fin:

(2.1.52)

where A is the cross-sectional surface area of the fin and θ(x) = T(x) – T∞. Figure 2.1.25 is a schematic
representation of the temperature distribution in a fin with boundary condition 4. Table 2.1.7 lists
equations of temperature distribution and rate of heat transfer for fins of uniform cross section with all
four different tip boundary conditions.

Fins or extended surfaces are used to increase the heat-transfer rate from a surface. However, the
presence of fins introduces an additional conduction resistance in the path of heat dissipating from the
base surface. If a fin is made of highly conductive material, its resistance to heat conduction is small,
creating a small temperature gradient from the base to the tip of the fin. However, fins show a temperature
distribution similar to that shown in Figure 2.1.25. Therefore, the thermal performance of fins is usually
assessed by calculating fin efficiency.

The efficiency of a fin is defined as the ratio of the actual heat loss to the maximum heat loss that
would have occurred if the total surface of the fin were at the base temperature, that is,

FIGURE 2.1.24 Various types of extended surfaces. Designs (d) – (f) are often used in HVAC heating or cooling coils.
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(2.1.53)

where Af is the total surface area of the fin, and qfin for fins with uniform cross section is obtained from
Table 2.1.7.

Radiation Heat Transfer

Thermal radiation is a heat-transfer process that occurs between any two objects that are at different
temperatures. All objects emit thermal radiation by virtue of their temperature. Scientists believe that
the thermal radiation energy emitted by a surface is propagated through the surrounding medium either
by electromagnetic waves or is transported by photons. In a vacuum, radiation travels at the speed of
light C0 (3 × 108 m/s in a vacuum); however, the speed of propagation c in a medium is less than C0 and
is given in terms of index of refraction of the medium, as in Eq. (2.1.54). The radiation wavelength
depends on the source frequency and refractive index of the medium through which the radiation travels,
according to the equation

TABLE 2.1.7 Equations for Temperature Distribution and Rate of Heat Transfer for Fins of Uniform 
Cross Section*

Tip Condition Temperature Distribution Fin Heat-Transfer Rate
Case (x = L) (θ/θb) (qfin)

1 Infinite fin (L→∞):
θ(L) = 0 e–µx M

2 Adiabatic:

M tanh mL

3 Fixed temperature:
θ(L) = θL

4 Convection heat transfer:

* θ ≡ T – T∞; θb ≡ θ(0) = Tb – T∞; m2 ≡ ; M ≡  θb.

FIGURE 2.1.25 Schematic representation of temperature distribution in a fin with boundary condition 4 at its tip.
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(2.1.54)

where n = index of refraction of the medium
C0 = 3 × 108 m/s (9.84 × 108 ft/s)
λ = wavelength, m (ft)
ν = frequency, s–1

Thermal radiation can occur over a wide spectrum of wavelengths, namely between 0.1 and 100 µm. The
spectral distribution and the magnitude of the emitted radiation from an object depends strongly on its
absolute temperature and the nature of its surface. For example, at the surface temperature of the sun,
5,800 K, most energy is emitted at wavelengths near 0.3 µm. However, thermal processes within buildings
occur at 10 µm. This particular radiation-process property has caused environmental concerns such as
global warming (or the greenhouse effect) in recent years. Global warming is a result of the increased
amount of carbon dioxide in the atmosphere. This gas absorbs radiation from the sun at shorter
wavelengths but is opaque to emitted radiation from the earth at longer wavelengths, thereby trapping
the thermal energy and causing a gradual warming of the atmosphere, as in a greenhouse.

A perfect radiator—called a blackbody—emits and absorbs the maximum amount of radiation at any
wavelength. The amount of heat radiated by a blackbody is

(2.1.55)

where σ = the Stefan–Boltzmann constant = 5.676 × 10–8 W/m2 K4 (or 0.1714 × 10–8 Btu/h ft2 °R4)
Tb = absolute temperature of the blackbody, K (°R)

A = surface area, m2 (ft2)

The spectral (or monochromatic) blackbody emissive power according to Planck’s Law is

(2.1.56)

where Ebλ(T) = spectral emissive power of a blackbody at absolute temperature T, 

λ = wavelength, m (µ)

T = absolute temperature of blackbody, K (°R)

C1 = constant, 3.7415 × 10–16 W m2 

C2 = constant, 1.4388 × 10–2 m K (2.5896 × 104 µ °R)

The spectral blackbody emissive power for different temperatures is plotted in Figure 2.1.26, which shows
that as the temperature increases, the emissive power and the wavelength range increase as well. However,
as temperature increases, the wavelength at which maximum emissive power occurs decreases. Wien’s
Displacement Law provides a relationship between the maximum power wavelength λmax and the absolute
temperature at which Ebλ is maximum:

To obtain the total emissive power of a blackbody, we integrate the spectral emissive power over all
wavelengths:

(2.1.57)
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Equation (2.1.57) is the same as Eq. (2.1.55) except that it is expressed per unit area. At a given temper-
ature Tb, the quantity Eb of Eq. (2.1.57) is the area under the curve corresponding to Tb in Figure 2.1.26.

Engineers sometimes encounter problems where it is necessary to find the fraction of the total energy
radiated from a blackbody in a finite interval between two specific wavelengths λ1 and λ2. This fraction
for an interval from 0 to λ1 can be determined from:

This integral has been calculated for various λT quantities, and the results are presented in Table 2.1.8.
The fraction of total radiation from a blackbody in a finite wavelength interval from λ1 to λ2 can then
be obtained from

where quantities B(0→λ2) and B(0→λ1) can be read from Table 2.1.8.

Radiation Properties of Objects
When radiation strikes the surface of an object, a portion of the total incident radiation is reflected, a
portion is absorbed, and if the object is transparent, a portion is transmitted through the object, as
depicted in Figure 2.1.27.

The fraction of incident radiation which is reflected is called the reflectance (or reflectivity) ρ, the fraction
transmitted is called the transmittance (or transmissivity) τ, and the fraction absorbed is called the

FIGURE 2.1.26 Spectral blackbody emissive power for different temperatures.
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TABLE 2.1.8 Blackbody Radiation Functions

λT λT
(mK × 103) B(0 → λ) (mK × 103) B(0 → λ)

0.2 0.341796 × 10–26 6.2 0.754187
0.4 0.186468 × 10–11 6.4 0.769234
0.6 0.929299 × 10–7 6.6 0.783248
0.8 0.164351 × 10–4 6.8 0.796180
1.0 0.320780 × 10–3 7.0 0.808160
1.2 0.213431 × 10–2 7.2 0.819270
1.4 0.779084 × 10–2 7.4 0.829580
1.6 0.197204 × 10–1 7.6 0.839157
1.8 0.393499 × 10–1 7.8 0.848060
2.0 0.667347 × 10–1 8.0 0.856344
2.2 0.100897 8.5 0.856344
2.4 0.140268 9.0 0.890090
2.6 0.183135 9.5 0.903147
2.8 0.227908 10.0 0.914263
3.0 0.273252 10.5 0.923775
3.2 0.318124 11.0 0.931956
3.4 0.361760 11.5 0.939027
3.6 0.403633 12 0.945167
3.8 0.443411 13 0.955210
4.0 0.480907 14 0.962970
4.2 0.516046 15 0.969056
4.4 0.548830 16 0.973890
4.6 0.579316 18 0.980939
4.8 0.607597 20 0.985683
5.0 0.633786 25 0.992299
5.2 0.658011 30 0.995427
5.4 0.680402 40 0.998057
5.6 0.701090 50 0.999045
5.8 0.720203 75 0.999807
6.0 0.737864 100 1.000000

FIGURE 2.1.27 Schematic of reflected, transmitted, and absorbed radiation.
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absorptance (or absorptivity) α. There are two types of radiation reflections: specular and diffuse. A
specular reflection is one in which the angle of incidence is equal to the angle of reflection, whereas a
diffuse reflection is one in which the incident radiation is reflected uniformly in all directions. Highly
polished surfaces such as mirrors approach the specular reflection characteristics, but most industrial
surfaces (rough surfaces) have diffuse reflection characteristics. By applying an energy balance to the surface
of the object as shown in Figure 2.1.27, the relationship between these properties can be expressed as

(2.1.58)

The relative magnitude of each one of these components depends on the characteristics of the surface,
its temperature, and the spectral distribution of the incident radiation. If an object is opaque (τ = 0), it
will not transmit any radiation. Therefore

(2.1.59)

If an object has a perfectly reflecting surface (a good mirror), then it will reflect all the incident radiation,
and

(2.1.60)

The emissivity, ε, of a surface at temperature T is defined as the ratio of total energy emitted to the
energy that would be emitted by a blackbody at the same temperature T:

(2.1.61)

where E(T) represents the radiation energy emitted from the surface. For a blackbody, Eq. (2.1.61) gives
εb = 1. The absorptivity for a blackbody is also equal to unity; therefore, εb = αb = 1.

A special type of surface called a gray surface or graybody is a surface with spectral emissivity and
absorptivity that are both independent of the wavelength. Therefore, for a graybody,  = αλ =  = ελ
where  and  are the average values of emissivity and absorptivity, respectively. In many engineering
problems, surfaces are not gray surfaces. However, one can employ graybody assumptions by using
suitable  and  values.

Table 2.1.9 provides emissivities of various surfaces at several wavelengths and temperatures. A more
extensive list of experimentally measured radiation properties of various surfaces has been provided by
Gubareff et al. [1960] and Kreith and Bohn [1993]; note that the listed quantities in Table 2.1.9 are
hemispherical emissivities. Detailed directional and spectral measurements of radiation properties of
surfaces are limited in the literature. Because of the difficulties in performing these detailed measure-
ments, most of the tabulated properties are averaged quantities, such as those presented in Table 2.1.9.
Properties averaged with respect to wavelength are termed total quantities, and properties averaged with
respect to direction are termed hemispherical quantities. Hemispherical spectral emissivity of a surface
is the ratio of (1) the spectral radiation emitted by a unit surface area of an object into all directions of
a hemisphere surrounding that area to (2) the spectral radiation emitted by a unit surface area of a
blackbody (at the same temperature) into all directions of that hemisphere.

The Radiation Shape Factor (View Factor)
In this section, we will only deal with surfaces that have diffuse reflection characteristics, because most
real surfaces used in different industries can be assumed to have diffuse reflection characteristics. In
solving radiation problems, we must find out how much of the radiation leaving one surface is being
intercepted by another surface.

α ρ τ+ + = 1.

α ρ τ+ = 1 and = 0 for an opaque object.

ρ α τ= = =1 0 0,  , and for a perfectly reflective surface.

ε
σ

= ( )E T

T 4 ,

α ε
ε α

α ε
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TABLE 2.1.9 Hemispherical Emissivities of Various Surfacesa

Material

Wavelength and Average Temperature

9.3 mm 5.4 mm 3.6 mm 1.8 mm 0.6 mm
310 K 530 K 800 K 1700 K Solar ~6,000 K

Metals

Aluminum
polished ~0.04 0.05 0.08 ~0.19 ~0.30
oxidized 0.11 ~0.12 0.18
24-ST weathered 0.40 0.32 0.27
surface roofing 0.22
anodized (at 1,000°F) 0.94 0.42 0.60 0.34

Brass
polished 0.10 0.10
oxidized 0.61

Chromium
polished ~0.08 ~0.17 0.26 ~0.40 0.49

Copper
polished 0.04 0.05 ~0.18 ~0.17
oxidized 0.87 0.83 0.77

Iron
polished 0.06 0.08 0.13 0.25 0.45
cast, oxidized 0.63 0.66 0.76
galvanized, new 0.23 0.42 0.66
galvanized, dirty 0.28 0.90 0.89
steel plate, rough 0.94 0.97 0.98
oxide 0.96 0.85 0.74
molten 0.3–0.4

Magnesium 0.07 0.13 0.18 0.24 0.30
Molybdenum filament ~0.09 ~0.15 ~0.20b

Silver
polished 0.01 0.02 0.03 0.11

Stainless steel
18-8, polished 0.15 0.18 0.22
18-8, weathered 0.85 0.85 0.85

Steel tube
oxidized 0.94

Tungsten filament 0.03 ~0.18 0.35c

Zinc
polished 0.02 0.03 0.04 0.06 0.46
galvanized sheet ~0.25

Building and Insulating Materials

Asbestos paper 0.93 0.93
Asphalt 0.93 0.90 0.93
Brick

red 0.93 0.70
fire clay 0.90 ~0.70 ~0.75
silica 0.90 0.75 0.84
magnesite refractory 0.90 ~0.40

Enamel, white 0.90
Marble, white 0.95 0.93 0.47
Paper, white 0.95 0.82 0.25 0.28
Plaster 0.91
Roofing board 0.93
Enameled steel, white 0.65 0.47
Asbestos cement, red 0.67 0.66
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The radiation shape factor F1–2 is defined as

For example, consider two black surfaces A1 and A2 at temperatures T1 and T2, as shown in Figure 2.1.28.
The radiation leaving surface A1 and reaching A2 is

(2.1.62)

and the radiation leaving surface A2 and reaching surface A1 is

(2.1.63)

From Eqs. (2.1.62) and (2.1.63), we can calculate the net radiation heat exchange between these two
black surfaces:

Shape factors for some geometries that have engineering applications are presented in Table 2.1.10. For
more information and an extensive list of shape factors, refer to Siegel and Howell [1972].

Paints

Aluminized lacquer 0.65 0.65
Cream paints 0.95 0.88 0.70 0.42 0.35
Lacquer, black 0.96 0.98
Lampblack paint 0.96 0.97 0.97 0.97
Red paint 0.96 0.74
Yellow paint 0.95 0.50 0.30
Oil paints (all colors) ~0.94 ~0.90
White (ZnO) 0.95 0.91 0.18

Miscellaneous

Ice ~0.97d

Water ~0.96
Carbon

T-carbon, 0.9% ash 0.82 0.80 0.79
filament ~0.72 0.53

Wood ~0.93
Glass 0.90 (Low)

a Since the emissivity at a given wavelength equals the absorptivity at that wavelength,
the values in this table can be used to approximate the absorptivity to radiation from a
source at the temperature listed. For example, polished aluminum will absorb 30% of
incident solar radiation.

b At 3,000 K.
c At 3,600 K.
d At 273 K.
Sources: Fischenden and Saunders [1932]; Hamilton and Morgan [1962]; Kreith and

Black [1980]; Schmidt and Furthman [1928]; McAdams [1954]; Gubareff et al. [1960].

TABLE 2.1.9 (continued) Hemispherical Emissivities of Various Surfacesa

Material

Wavelength and Average Temperature

9.3 mm 5.4 mm 3.6 mm 1.8 mm 0.6 mm
310 K 530 K 800 K 1700 K Solar ~6,000 K

F1 2− = diffuse radiation leaving surface A  and being intercepted by surface A

total diffuse radiation leaving surface A
1 2

1

.

˙ ,Q A F Eb1 2 1 1 2 1→ −=

˙ ,Q A F Eb2 1 2 2 1 2→ −=

∆ ˙ .Q A F E A F Eb b1 2 1 1 2 1 2 2 1 2→ − −= −
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Example 2.1.9

A flat-plate solar collector with a single glass cover to be used for building water heating is shown in
Figure 2.1.29. The following quantities are known:

The solar irradiation, Gs = 750 W/m2

The absorptivity of the cover plate to solar radiation, αcp,s = 0.16
The transmissivity of the cover plate to solar radiation, τcp = 0.84
The emissivity of the cover plate to longwave radiation, εcp = 0.9
The absorptivity of the absorber plate to solar radiation, αap,s = 1.0
The emissivity of the absorber plate to longwave radiation, εap = 0.1
The convection coefficient between the absorber plate and the cover plate, hi = 2 W/m2 K
The convection coefficient between the cover plate and ambient, ho = 5 W/m2 K
The absorber-plate temperature, Tap = 120°C
The ambient air temperature T∞ = 30°C
The effective sky temperature, Tsky = –10°C

Using this information, calculate the useful heat absorbed by the absorber plate.

Solution:

We will assume the following:

• Steady-state conditions

• Uniform surface heat-flux and temperature for the cover plate and the absorber plate

• Opaque, diffuse-gray surface behavior for longwave radiation

• Well-insulated absorber plate

To find the useful heat absorbed by the absorber plate, perform an energy balance on a unit area of
the absorber plate, as in Figure 2.1.30:

(2.1.64)

FIGURE 2.1.28 Sketch illustrating the nomenclature for shape factor between the two surfaces A1 and A2.

α τap s cp s s ap cp uG q q q, ,  ,= + +−conv,i rad,
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TABLE 2.1.10 Minicatalog of Geometric View Factors
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where qconv,i = hi (Tap – Tcp) is the convection heat exchange between the absorber plate and the cover

plate and qrad,ap-cp = is the heat exchange by radiation between them. Note

that the shape factor between two parallel plates is equal to one. The left-hand side of Eq. (2.1.64)

represents the solar irradiation transmitted through the cover plate and absorbed by the absorber plate.

Substituting for qconv,i and qrad,ap-cp in Eq. (2.1.64), we obtain (for αap,s = 1)

(2.1.65)

TABLE 2.1.10 (continued) Minicatalog of Geometric View Factors

σ ε εT Tap cp ap cp
4 4 1 1 1−( ) + −( )

τ
σ

ε εcp s s i ap cp

ap cp

ap cp
uG h T T

T T
q,  .= −( ) +

−( )
+ −

+
4 4

1 1 1
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To find qu from Eq. (2.1.65), Tcp should be known, which is obtained from an energy balance on the
cover plate, as in Figure 2.1.31:

(2.1.66)

where qconv,o = ho (Tcp – T∞) is the heat loss by convection and is the heat
exchange by radiation between the cover plate and sky. Equation (2.1.66) can be written as

(2.1.67)

Substituting for known quantities in Eq. (2.1.67) Tcp is calculated to be Tcp = 44.6°C. Substituting for
Tcp and other known quantities in Eq. (2.1.65), qu is 402.5 W/m2.

TABLE 2.1.10 (continued) Minicatalog of Geometric View Factors

αcp s s i ap cp o cpG q q q q, , + + = +− −conv, rad, conv, rad, sky

q T Tcp cp cprad, sky sky− = −( )ε σ 4 4

α
σ

ε ε
ε σcp s s i ap cp

ap cp

ap cp
o cp cp cpG h T T

T T
h T T T T,   .+ −( ) +

−( )
+ −

= −( ) + −( )∞

4 4

4

1 1 1 sky
4
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2.1.3 Fundamentals of Fluid Mechanics

The distribution of heated and cooled fluids by pipes and ducts, is an essential part of all HVAC processes
and systems. The fluids encountered in these processes are gases, vapors, liquids, or mixtures of liquid
and vapor (2–phase flow). This section briefly reviews certain basic concepts of fluid mechanics that are
often encountered in analyzing and designing HVAC systems.

Fluid flowing through a conduit will encounter shear forces that result from viscosity of the fluid. The
fluid undergoes continuous deformation when subjected to these shear forces. Furthermore, as a result
of shear forces, the fluid will experience pressure losses as it travels through the conduit.

FIGURE 2.1.29 Flat-plate solar collector with a single glass cover.

FIGURE 2.1.30 Energy balance on a unit area of the absorber plate.

FIGURE 2.1.31 Energy balance on a unit area of the cover plate.
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Viscosity, µ, is a property of fluid best defined by Newton’s Law of Viscosity:

(2.1.68)

where τ is the frictional shear stress, and du/dy represents the measure of the motion of one layer of fluid
relative to an adjacent layer. The following observation will help to explain the relationship between
viscosity and shear forces. Consider two very long parallel plates with a fluid between them, as shown
in Figure 2.1.32. Assume a uniform pressure throughout the fluid. The upper plate is moving with a
constant velocity u0, and the lower plate is stationary. Experiments show that the fluid adjacent to the
moving plate will adhere to that plate and move along with the plate at a velocity equal to u0, whereas
the fluid adjacent to the stationary plate will have zero velocity. The experimentally verified velocity
distribution in the fluid is linear and can be expressed as

(2.1.69)

where l is the distance between the two parallel plates. The force necessary to keep the upper plate moving
at a constant velocity if u0 should be large enough to overcome (or balance) the frictional forces in the
fluid. Again, experimental observations indicate that this force is proportional to the ratio u0/l. One can
conclude from Eq. (2.1.69) that u0/l is equal to the rate of change of velocity, du/dy. Therefore, the
frictional force per unit area (shear stress), τ, is proportional to du/dy, and the proportionality constant
is µ, which is a property of the fluid known as viscosity. Therefore, we obtain Eq. (2.1.68), which is known
as Newton’s Law of Viscosity (or friction). The quantity µ is a measure of the viscosity of the fluid and
depends on the temperature and pressure of the fluid. Equation (2.1.68) is analogous to Fourier’s Law
of Heat Conduction given by Eq. (2.1.25). Fluids that do not obey Newton’s Law of Viscosity are called
non-Newtonian fluids. Fluids with zero viscosity are known as inviscid or ideal fluids. Molasses and tar
are examples of highly viscous liquids; water and air on the other hand, have low viscosities. The viscosity
of a gas increases with temperature, but the viscosity of a liquid decreases with temperature. Reid,
Sherwood, and Prausnitz [1977] provide a thorough discussion on viscosity.

Flow Characteristics

The flow of a fluid may be characterized by one or a combination of the following descriptor pairs:
laminar/turbulent, steady/unsteady, uniform/nonuniform, reversible/irreversible, rotational/irrotational.
In this section, however, we will focus our attention only on laminar and turbulent flows.

In laminar flow, fluid particles move along smooth paths in layers, with one layer sliding smoothly
over an adjacent layer without significant macroscopic mixing. Laminar flow is governed by Newton’s
Law of Viscosity. Turbulent flow is more prevalent than laminar flow in engineering processes. In

FIGURE 2.1.32 A fluid sheared between two parallel plates.

τ µ= du

dy
,

u
y

u=
l

 ,0
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turbulent flow, the fluid particles move in irregular paths, causing an exchange of momentum between
various portions of the fluid; adjacent fluid layers mix and this mixing mechanism is called eddy motion.
In this type of flow, the velocity at any given point under steady-state conditions fluctuates in all directions
about some time-mean value. Turbulent flow causes greater shear stresses throughout the fluid, producing
more irreversibilities and losses. An equation similar to Newton’s Law of Viscosity may be written for
turbulent flows:

(2.1.70)

where the factor η is the eddy viscosity, which depends on the fluid motion and density. Unlike the fluid
viscosity, µ, the eddy viscosity is not a fluid property and is determined through experiments.

The type of flow is primarily determined by the value of a nondimensional number known as a
Reynolds number, which is the ratio of inertia forces to viscous forces given by

(2.1.71)

where uavg is the average velocity and DH is the hydraulic diameter defined by Eq. (2.1.50). The value of
the Reynolds number can be used as the criterion to determine whether the flow is laminar or turbulent.
In general, laminar flow occurs in closed conduits when Re < 2,100; the flow goes through transition
when 2,100 < Re < 6,000 and becomes turbulent when Re > 6,000.

For fluid flow over flat plates, laminar flow is generally accepted to occur at Rex = ρux/µ < 3 × 105,
where x is the distance from the leading edge of the plate and u is the free-stream velocity. Note that if
the flow approaching the flat plate is turbulent, it will remain turbulent from the leading edge of the
plate forward.

When a fluid is flowing over a solid surface, the velocity of the fluid layer in the immediate neighbor-
hood of the surface is influenced by viscous shear; this region of the fluid is called the boundary layer.
Boundary layers can be laminar or turbulent depending on their length, the fluid viscosity, the velocity
of the bulk fluid, and the surface roughness of the solid body.

Analysis of Flow Systems

Most engineering problems require some degree of system analysis. Regardless of the nature of the flow,
all fluid-flow situations are subject to the following relations:

1. Newton’s Law of Motion, 
2. Conservation of mass
3. The First and Second Laws of Thermodynamics
4. Boundary conditions such as zero velocity at a solid surface.

In an earlier section, the First Law of Thermodynamics was applied to a system shown in Figure 2.1.1.
With some modifications, the same energy balance can be applied to any fluid-flow system. For example,
a term representing the frictional pressure losses should be added to the left-hand side of Eq. (2.1.2), as
expressed by the following equation:

(2.1.72)

where f represents the frictional pressure losses and is the rate of work done on the fluid (note the sign
change from –  to +  in Eq. (2.1.72), because the work is done on the fluid). In the remainder of this
section, we will focus on obtaining an expression for f and analyzing different sources of frictional
pressure losses.
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Using Newton’s Law of Motion, the weight of a body, w, can be defined as the force exerted on the
body as a result of the acceleration of gravity, g,

(2.1.73)

In the English system of units, 1 lbm weighs 1 lbf at sea level because the proportionality constant gc

is numerically equal to the gravitational acceleration (32.2 ft/s2). However, in the SI system, 1 kg of mass
weighs 9.81 N at sea level because gc = 1 kg m/N s2 (or gc = 103 kg m3/kJ s2) and g = 9.81 m/s2.

Equation (2.1.73) can be used to determine the static pressure of a column of fluid. For example, a
column of fluid at height z that experiences an environment or atmospheric pressure of p0 over its upper
surface will exert a pressure of p at the base of the fluid column given by

(2.1.74)

where ρ is the density of the fluid. The base pressure as expressed by Eq. (2.1.74) is a function of fluid
height or fluid head and does not depend on the shape of the container. Knowing the fluid head is very
important, especially in specifying a pump, as it is common practice to specify the performance of the
pump in terms of fluid head. Therefore, we can calculate the required mechanical power from

(2.1.75)

Equation (2.1.75) expresses the pump power at 100% efficiency; in reality, however, mechanical pumps
have efficiencies of less than 100%. Therefore, the required mechanical power  is

(2.1.76)

A pump used in a system is expected to overcome various types of pressure losses such as frictional
pressure losses in the piping; pressure losses due to fittings, bends, and valves; and pressure losses due
to sudden enlargements and contractions. All these pressure losses should be calculated for a system and
summed up to obtain the total pressure drop through a system.

The frictional pressure losses in the piping are caused by the shearing force at the fluid-solid interface.
Through a force balance, we can obtain the frictional pressure loss of an incompressible fluid in a pipe
between two points as

(2.1.77)

where L is the length of the pipe between points 1 and 2, D is the pipe diameter, u is the average fluid
velocity in the pipe, and f is the dimensionless friction factor. For laminar flow inside a pipe, the friction
factor is

(2.1.78)

where the Reynolds number is based on the hydraulic diameter DH. The friction factor for turbulent flow
depends on the surface roughness of the pipe and on the Reynolds number. The friction factor for various
surface roughnesses and Reynolds numbers is presented in Figure 2.1.33, which is called the Moody
diagram. The relative roughnesses of the various commercial pipes are given in Figure 2.1.34.
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 from Friction Factor for Pipe Flow by
FIGURE 2.1.33 Friction factors for various surface roughness and Reynolds numbers. Data extracted
L.F. Moody (1944), with permission of the publisher, The American Society of Mechanical Engineers.



FIGURE 2.1.34 Relative roughness of commercial pipe. Data extracted from Friction Factor for Pipe Flow by L.F.
Moody (1944), with permission of the publisher, The American Society of Mechanical Engineers.
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Pressure losses due to fittings, bends, and valves are generally determined through experiments. This
type of pressure loss can be correlated to the average fluid velocity in the pipe by

(2.1.79)

where kb is a pressure-loss coefficient obtained from a handbook or from the manufacturer, and u is the
average fluid velocity in the pipe upstream of the fitting, bend, or valve. For typical values of kb, refer to
Perry, Perry, Chilton, and Kirkpatrick [1963], Freeman [1941], and the Standards of Hydraulic Institute
[1948].

Pressure losses due to sudden enlargement of the cross section of the pipe can be calculated using

(2.1.80)

where As/AL is the ratio of the cross-sectional area of the smaller pipe to that of the larger pipe, α is the
nondimensional pressure-loss coefficient (α = 1 for turbulent flow and 2 for laminar flow), and u is the
average fluid velocity in the smaller pipe. Note that a gradual increase in pipe cross section will have little
effect on pressure losses. In case of sudden contraction of pipe size, the pressure drop can be calculated
from

(2.1.81)

where As/AL and α are as defined for Eq. (2.1.80), and uc is the average fluid velocity in the smaller pipe
(contraction). Adding the various pressure losses, the total pressure loss in a system can be calculated from

(2.1.82)

For a system under consideration, a pump must be chosen that can produce sufficient pressure head to
overcome all the losses presented in Eq. (2.1.82). For system engineering applications, Eq. (2.1.82) can
be simplified to

(2.1.83)

where f is as defined for Eq. (2.1.77), u is the average velocity inside the conduit, and D is the appropriate
diameter for the section of the system under consideration. The summation accounts for the effect of
changes in pipe length, diameter, and relative roughness. The length L represents not only the length of
the straight pipe of the system, but also, equivalent lengths of straight pipe that would have the same
effects as the fittings, bends, valves, and sudden enlargements or contractions. Figure 2.1.35 provides a
nomogram to determine such equivalent lengths.

Example 2.1.10

Figure 2.1.36 shows a system layout for a small solar collector where water at 35°C (95°F) is pumped
from a tank (surface-area heat exchanger) through three parallel solar collectors and back to the tank.
The water flow rate is 0.9 m3/min (23.8 gal/min). All the piping is 1–in. Sch 40 steel pipe (cross-
sectional area = 0.006 ft2 = 5.57 × 10–4 m2, with inside diameter = 1.049 in. = 0.0266 m). The pressure
drop through each solar collector is estimated to be 1.04 kPa (0.15 psi) for a flow rate of 0.03 m3/min
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(7.9 gal/min). Find the appropriate pump size for this system using the lengths and fittings specified
in Figure 2.1.36. Assume a pump efficiency of about 75% and that the heat gain through the collectors
is equal to the change in the internal energy of the water from point 1 to point 2.

Solution:

To find the pump 1 size, we apply an energy-balance similar to Eq. (2.1.72) between points 1 and 2
shown in Figure 2.1.36. Point 1 represents the water free-surface in the tank, whereas point 2 represents

FIGURE 2.1.35 Equivalent lengths for friction losses. Data extracted from Flow of Fluids through Valves, Fittings
and Pipe, Publication 410M (1988), with permission of the publisher, Crane Company.
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the water inlet to the tank after the water has circulated through the collectors. Because both points
(1 and 2) have the same pressure, we have

Similarly, because there is no significant height difference between these two points, we have

The velocity at the water free-surface (point 1) is u1 = 0. For point 2, the velocity is

Therefore,

Also note that

Therefore, Eq. (2.1.72) reduces to

(2.1.84)

FIGURE 2.1.36 Layout of a small solar-collector system.
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The frictional pressure losses f should be determined for the whole system between points 1 and 2.
Equation (2.1.83) can be used to determine f; however, the total equivalent length should be deter-
mined first. The tot al straight piping in the system is

Using Figure 2.1.35, the equivalent lengths for bends and valves are obtained as follows:

Borda entrance: 0.79 m (2.6 ft)
Open gate valve: 0.18 m (0.6 ft)
Open globe valve: 7.90 m (26.0 ft)
Standard tee: 1.80 m (5.9 ft)
Standard elbow: 0.81 m (2.7 ft)

Therefore, with two standard elbows in this system, the equivalent length for bends, elbows, and valves
becomes Lb = 0.79 m + 0.18 m + 7.9 m + 1.8 m + 2 (0.82 m) = 12.31 m, and the total equivalent of
1–in. Sch 40 pipe is L = Lb + Ls = 40.31 m. To calculate the friction factor, we must calculate the
Reynolds number. Assuming an average fluid density of ρ = 988 kg/m3 and an absolute viscosity of µ =
555 × 10–6 Ns/m2, the Reynolds number is

From Figure 2.1.34, the relative roughness of the pipe obtained is e/D = 0.0018, and by using
Figure 2.1.33 (the Moody diagram), the friction factor obtained is f ≈ 0.006. Substituting in Eq. (2.1.83),
the work required to overcome the frictional losses is obtained from

where Frc is the required work to overcome pressure loss through the collectors. Since the collectors
are in parallel, the total pressure loss is equal to the pressure drop through each collector. Therefore,

and

Substituting for  and f in Eq. (2.1.84), we can calculate the input power to the pump (the mass
flow rate of the fluid is 0.494 kg/s):
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With a 75% efficiency, the actual mechanical energy required will be

The appropriate pump size is

2.1.4 Heat Exchangers

A heat exchanger is a device designed to transfer energy between two fluids. Heat exchangers are often used
to transfer thermal energy from a source (e.g., a boiler or chiller) to a point of use (e.g., a cooling or heating
coil). They are particularly important for improving overall process efficiency of energy-efficient systems.
Heat exchangers can be expensive and must be designed carefully to maximize effectiveness and minimize
cost. Depending on their application, heat exchangers can have different shapes, designs, and sizes. The
major types of heat exchangers include boilers, condensers, radiators, evaporators, cooling towers, regen-
erators, and recuperators. All heat exchangers are identified by their geometric shape and the direction of
flow of the heat-transfer fluids inside them. Figure 2.1.37 depicts some common heat exchangers. In the
following paragraphs, we describe the operating principles of some of the more common heat exchangers.

A direct-contact heat exchanger is designed so that two fluids are physically brought into contact,
with no solid surface separating them. In this type of heat exchanger, fluid streams form a mutual interface
through which the heat transfer takes place between the two fluids. Direct-contact (DC) heat exchangers
are best used when the temperature difference between the hot and cold fluids is small. An example of
a direct-contact heat exchanger is a cooling tower, where water and air are brought together by letting
water fall from the top of the tower and having it contact a stream of air flowing upward. Evaporative
coolers are another common DC device.

Regenerators are heat exchangers in which the hot and cold fluids flow alternately through the same
space. As a result of alternating flow, the hot fluid heats the core of the heat exchanger, where the stored
heat is then transferred to the cold fluid. Regenerators are used most often with gas streams, where some
mixing of the two streams is not a problem and where the cost of another type of heat exchanger would
be prohibitive. For example, heat recovery in very energy efficient homes is often done with “air-to-air”
regenerators to maintain an acceptable quality of air inside the homes.

The recuperator is the heat exchanger encountered most often. It is designed so that the hot and cold
fluids do not come into contact with each other. Energy is exchanged from one fluid to a solid surface
by convection, through the solid by conduction, and from the other side of the solid surface to the second
fluid by convection. The evaporator tube bundle in a chiller is such as device.

In Section 2.1.2, we described these heat-transfer processes and developed some simple equations that
are applied here to determine basic equipment performance. Designing a heat exchanger also requires
estimating the pressure flow losses that can be carried out, based on the information provided in
Section 2.1.3. Finally, appropriate materials must be selected and a structural analysis done; Frass and
Ozisik [1965] provide a good discussion of these topics.

Heat-Exchanger Performance

The performance of a heat exchanger is based on the exchanger’s ability to transfer heat from one fluid
to another. Calculating the heat transfer in heat exchangers is rather involved because the temperature
of one or both of the fluids is changing continuously as they flow through the exchanger. There are three
main flow configurations in heat exchangers: parallel flow, counter flow, and cross flow. In parallel-flow
heat exchangers, both fluids enter from one end of the heat exchanger flowing in the same direction
and they both exit from the other end. In counter-flow heat exchangers, hot fluid enters from one end
and flows in an opposite direction to cold fluid entering from the other end. In cross-flow heat
exchangers, baffles are used to force the fluids to move perpendicular to each other, to take advantage
of higher heat-transfer coefficients encountered in a cross-flow configuration. Figure 2.1.38 shows the
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temperature variation of the fluids inside the heat exchanger for a parallel-flow and a counter-flow heat
exchanger. In parallel-flow heat exchangers, the temperature difference ∆Ti between the two fluids at
the inlet of the heat exchanger is much greater than ∆To, the temperature difference at the outlet of the
heat exchanger. In counter-flow heat exchangers, however, the temperature difference between the fluids
shows only a slight variation along the length of the heat exchanger. Assuming that the heat loss from
the heat exchanger is negligible, usually the case in a practical design, the heat loss of the hot fluid
should be equal to the heat gain by the cold fluid. Therefore, we can write

(2.1.85)

where the subscripts c and h refer to cold and hot fluids, respectively. Note that in heat-exchanger analysis,
the terms ccp,c and hcp,h are called the capacity rates of the cold and hot fluids, respectively, and are
usually represented by Cc and Ch.

FIGURE 2.1.37 Some examples of heat exchangers.

˙ ˙  ˙   ,, ,Q m c T T m c T Tc p c co ci h p h hi ho= −( ) = −( )

ṁ ṁ
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