Paul Norton "Appendices"
Handbook of Heating, Ventilation, and Air Conditioning
Ed. Jan F. Kreider
Boca Raton, CRC Press LLC. 2001

8

Appendices

Paul Norton

National Renewable Energy Laboratory

Appendix A Properties of Gases and Vapors
Appendix B Properties of Liquids
Appendix C Properties of Solids
Appendix D Gases and Vapors
Appendix E Composition and Heating Values of Common Fuels

Appendix A Properties of Gases and Vapors

TABLE A. 1 Properties of Dry Air at Atmospheric Pressure

Symbols and Units:

$K=$ absolute temperature, degrees Kelvin
$\operatorname{deg} C=$ temperature, degrees Celsius
$\operatorname{deg} F=$ temperature, degrees Fahrenheit
$\rho=$ density, $\mathrm{kg} / \mathrm{m}^{3}$ (sea level)
$\mathrm{c}_{\mathrm{p}}=$ specific heat capacity, $\mathrm{kJ} / \mathrm{kg} \cdot \mathrm{K}$
$\mathrm{c}_{\mathrm{p}} / \mathrm{c}_{\mathrm{v}}=$ specific heat capacity ratio, dimensionless
$\mu=$ viscosity, $\mathrm{N} \cdot \mathrm{s} / \mathrm{m}^{2} \times 10^{6}\left(\right.$ For $\mathrm{N} \cdot \mathrm{s} / \mathrm{m}^{2}(=\mathrm{kg} / \mathrm{m} \cdot \mathrm{s})$ multiply tabulated values by 10^{-6})
$k=$ thermal conductivity, W/m $\cdot \mathrm{k} \times 10^{3}$ (For W/m $\cdot \mathrm{K}$ multiply tabulated values by 10^{-3})
$\operatorname{Pr}=$ Prandtl number, dimensionless
$h=$ enthalpy, $\mathrm{kJ} / \mathrm{kg}$
$V_{s}=$ sound velocity, m / s

Temperature			Properties							
K	$\operatorname{deg} C$	$\operatorname{deg} F$	ρ	c_{p}	c_{p} / c_{v}	μ	k	Pr	h	V_{s}
100	-173.15	-280	3.598	1.028		6.929	9.248	. 770	98.42	198.4
110	-163.15	-262	3.256	1.022	1.4202	7.633	10.15	. 768	108.7	208.7
120	-153.15	-244	2.975	1.017	1.4166	8.319	11.05	. 766	118.8	218.4
130	-143.15	-226	2.740	1.014	1.4139	8.990	11.94	. 763	129.0	227.6
140	-133.15	-208	2.540	1.012	1.4119	9.646	12.84	. 761	139.1	236.4
150	-123.15	-190	2.367	1.010	1.4102	10.28	13.73	. 758	149.2	245.0
160	-113.15	-172	2.217	1.009	1.4089	10.91	14.61	. 754	159.4	253.2
170	-103.15	-154	2.085	1.008	1.4079	11.52	15.49	. 750	169.4	261.0
180	-93.15	-136	1.968	1.007	1.4071	12.12	16.37	. 746	179.5	268.7
190	-83.15	-118	1.863	1.007	1.4064	12.71	17.23	. 743	189.6	276.2
200	-73.15	-100	1.769	1.006	1.4057	13.28	18.09	. 739	199.7	283.4
205	-68.15	-91	1.726	1.006	1.4055	13.56	18.52	. 738	204.7	286.9
210	-63.15	-82	1.684	1.006	1.4053	13.85	18.94	. 736	209.7	290.5
215	-58.15	-73	1.646	1.006	1.4050	14.12	19.36	. 734	214.8	293.9
220	- 53.15	-64	1.607	1.006	1.4048	14.40	19.78	. 732	219.8	297.4
225	-48.15	-55	1.572	1.006	1.4046	14.67	20.20	. 731	224.8	300.8
230	-43.15	-46	1.537	1.006	1.4044	14.94	20.62	. 729	229.8	304.1
235	-38.15	-37	1.505	1.006	1.4042	15.20	21.04	. 727	234.9	307.4
240	-33.15	-28	1.473	1.005	1.4040	15.47	21.45	. 725	239.9	310.6
245	-28.15	-19	1.443	1.005	1.4038	15.73	21.86	. 724	244.9	313.8
250	-23.15	-10	1.413	1.005	1.4036	15.99	22.27	. 722	250.0	317.1
255	-18.15	-1	1.386	1.005	1.4034	16.25	22.68	. 721	255.0	320.2
260	-13.15	8	1.359	1.005	1.4032	16.50	23.08	. 719	260.0	323.4
265	-8.15	17	1.333	1.005	1.4030	16.75	23.48	. 717	265.0	326.5
270	-3.15	26	1.308	1.006	1.4029	17.00	23.88	. 716	270.1	329.6
275	+1.85	35	1.285	1.006	1.4026	17.26	24.28	. 715	275.1	332.6
280	6.85	44	1.261	1.006	1.4024	17.50	24.67	. 713	280.1	335.6
285	11.85	53	1.240	1.006	1.4022	17.74	25.06	. 711	285.1	338.5
290	16.85	62	1.218	1.006	1.4020	17.98	25.47	. 710	290.2	341.5
295	21.85	71	1.197	1.006	1.4018	18.22	25.85	. 709	295.2	344.4
	26.85	80	1.177	1.006	1.4017	18.46	26.24	. 708	300.2	347.3
305	31.85	89	1.158	1.006	1.4015	18.70	26.63	. 707	305.3	350.2
310	36.85	98	1.139	1.007	1.4013	18.93	27.01	. 705	310.3	353.1
315	41.85	107	1.121	1.007	1.4010	19.15	27.40	. 704	315.3	355.8
320	46.85	116	1.103	1.007	1.4008	19.39	27.78	. 703	320.4	358.7

Source: Condensed and computed from "Tables of Thermal Properties of Gases", National Bureau of Standards Circular 564, U.S. Government Printing Office, November 1955.

TABLE A. 1 (continued) Properties of Dry Air at Atmospheric Pressure

Temperature			Properties							
K	$\operatorname{deg} C$	$\operatorname{deg} F$	ρ	c_{p}	c_{p} / c_{v}	μ	k	Pr	h	V_{s}
325	51.85	125	1.086	1.008	1.4006	19.63	28.15	. 702	325.4	361.4
330	56.85	134	1.070	1.008	1.4004	19.85	28.53	. 701	330.4	364.2
335	61.85	143	1.054	1.008	1.4001	20.08	28.90	. 700	335.5	366.9
340	66.85	152	1.038	1.008	1.3999	20.30	29.28	. 699	340.5	369.6
345	71.85	161	1.023	1.009	1.3996	20.52	29.64	. 698	345.6	372.3
350	76.85	170	1.008	1.009	1.3993	20.75	30.03	. 697	350.6	375.0
355	81.85	179	0.9945	1.010	1.3990	20.97	30.39	. 696	355.7	377.6
360	86.85	188	0.9805	1.010	1.3987	21.18	30.78	. 695	360.7	380.2
365	91.85	197	0.9672	1.010	1.3984	21.38	31.14	. 694	365.8	382.8
370	96.85	206	0.9539	1.011	1.3981	21.60	31.50	. 693	370.8	385.4
375	101.85	215	0.9413	1.011	1.3978	21.81	31.86	. 692	375.9	388.0
380	106.85	224	0.9288	1.012	1.3975	22.02	32.23	. 691	380.9	390.5
385	111.85	233	0.9169	1.012	1.3971	22.24	32.59	. 690	386.0	393.0
390	116.85	242	0.9050	1.013	1.3968	22.44	32.95	. 690	391.0	395.5
395	121.85	251	0.8936	1.014	1.3964	22.65	33.31	. 689	396.1	398.0
400	126.85	260	0.8822	1.014	1.3961	22.86	33.65	. 689	401.2	400.4
410	136.85	278	0.8608	1.015	1.3953	23.27	34.35	. 688	411.3	405.3
420	146.85	296	0.8402	1.017	1.3946	23.66	35.05	. 687	421.5	410.2
430	156.85	314	0.8207	1.018	1.3938	24.06	35.75	. 686	431.7	414.9
440	166.85	332	0.8021	1.020	1.3929	24.45	36.43	. 684	441.9	419.6
450	176.85	350	0.7842	1.021	1.3920	24.85	37.10	. 684	452.1	424.2
460	186.85	368	0.7677	1.023	1.3911	25.22	37.78	. 683	462.3	428.7
470	196.85	386	0.7509	1.024	1.3901	25.58	38.46	. 682	472.5	433.2
480	206.85	404	0.7351	1.026	1.3892	25.96	39.11	. 681	482.8	437.6
490	216.85	422	0.7201	1.028	1.3881	26.32	39.76	. 680	493.0	442.0
500	226.85	440	0.7057	1.030	1.3871	26.70	40.41	. 680	503.3	446.4
510	236.85	458	0.6919	1.032	1.3861	27.06	41.06	. 680	513.6	450.6
520	246.85	476	0.6786	1.034	1.3851	27.42	41.69	. 680	524.0	454.9
530	256.85	494	0.6658	1.036	1.3840	27.78	42.32	. 680	534.3	459.0
540	266.85	512	0.6535	1.038	1.3829	28.14	42.94	. 680	544.7	463.2
550	276.85	530	0.6416	1.040	1.3818	28.48	43.57	. 680	555.1	467.3
560	286.85	548	0.6301	1.042	1.3806	28.83	44.20	. 680	565.5	471.3
570	296.85	566	0.6190	1.044	1.3795	29.17	44.80	. 680	575.9	475.3
580	306.85	584	0.6084	1.047	1.3783	29.52	45.41	. 680	586.4	479.2
590	316.85	602	0.5980	1.049	1.3772	29.84	46.01	. 680	596.9	483.2
600	326.85	620	0.5881	1.051	1.3760	30.17	46.61	. 680	607.4	486.9
620	346.85	656	0.5691	1.056	1.3737	30.82	47.80	. 681	628.4	494.5
640	366.85	692	0.5514	1.061	1.3714	31.47	48.96	. 682	649.6	502.1
660	386.85	728	0.5347	1.065	1.3691	32.09	50.12	. 682	670.9	509.4
680	406.85	764	0.5189	1.070	1.3668	32.71	51.25	. 683	692.2	516.7
700	426.85	800	0.5040	1.075	1.3646	33.32	52.36	. 684	713.7	523.7
720	446.85	836	0.4901	1.080	1.3623	33.92	53.45	. 685	735.2	531.0
740	466.85	872	0.4769	1.085	1.3601	34.52	54.53	. 686	756.9	537.6
760	486.85	908	0.4643	1.089	1.3580	35.11	55.62	. 687	778.6	544.6
780	506.85	944	0.4524	1.094	1.3559	35.69	56.68	. 688	800.5	551.2
800	526.85	980	0.4410	1.099	1.354	36.24	57.74	. 689	822.4	557.8
850	576.85	1070	0.4152	1.110	1.349	37.63	60.30	. 693	877.5	574.1
900	626.85	1160	0.3920	1.121	1.345	38.97	62.76	. 696	933.4	589.6
950	676.85	1250	0.3714	1.132	1.340	40.26	65.20	. 699	989.7	604.9
1000	726.85	1340	0.3529	1.142	1.336	41.53	67.54	. 702	1046	619.5
1100	826.85	1520	0.3208	1.161	1.329	43.96			1162	648.0
1200	926.85	1700	0.2941	1.179	1.322	46.26			1279	675.2
1300	1026.85	1880	0.2714	1.197	1.316	48.46			1398	701.0
1400	1126.85	2060	0.2521	1.214	1.310	50.57			1518	725.9
1500	1220.85	2240	0.2353	1.231	1.304	52.61			1640	749.4
1600	1326.85	2420	0.2206	1.249	1.299	54.57			1764	772.6
1800	1526.85	2780	0.1960	1.288	1.288	58.29			2018	815.7
2000	1726.85	3140	0.1764	1.338	1.274				2280	855.5
2400	2126.85	3860	0.1467	1.574	1.238				2853	924.4
2800	2526.85	4580	0.1245	2.259	1.196				3599	983.1

Symbols and Units:

$P_{s}=$ pressure of water vapor at saturation, $\mathrm{N} / \mathrm{m}^{2}$
$W_{s}=$ humidity ratio at saturation, mass of water vapor associated with unit mass of dry air
$V_{a}=$ specific volume of dry air, $\mathrm{m}^{3} / \mathrm{kg}$
$V_{s}=$ specific volume of saturated mixture, $\mathrm{m}^{3} / \mathrm{kg}$ dry air
$h_{a}^{a}=$ specific enthalpy of dry air, $\mathrm{kJ} / \mathrm{kg}$
$h_{s}=$ specific enthalpy of saturated mixture, $\mathrm{kJ} / \mathrm{kg}$ dry air
$s_{s}=$ specific entropy of saturated mixture, $\mathrm{J} / \mathrm{K} \cdot \mathrm{kg}$ dry air

Temperature			Properties						
C	K	F	P_{s}	W_{s}	V_{a}	V_{s}	h_{a}^{a}	h_{s}	s_{s}
-40	233.15	-40	12.838	0.00007925	0.65961	0.65968	-22.35	-22.16	-90.659
-30	243.15	-22	37.992	0.0002344	0.68808	0.68833	-12.29	- 11.72	-46.732
-25	248.15	-13	63.248	0.0003903	0.70232	0.70275	-7.265	-6.306	-24.706
-20	253.15	-4	103.19	0.0006371	0.71649	0.71724	-2.236	-0.6653	-2.2194
-15	258.15	+5	165.18	0.001020	0.73072	0.73191	+2.794	5.318	21.189
-10	263.15	14	259.72	0.001606	0.74495	0.74683	7.823	11.81	46.104
-5	268.15	23	401.49	0.002485	0.75912	0.76218	12.85	19.04	73.365
0	273.15	32	610.80	0.003788	0.77336	0.77804	17.88	27.35	104.14
5	278.15	41	871.93	0.005421	0.78759	0.79440	22.91	36.52	137.39
10	283.15	50	1227.2	0.007658	0.80176	0.81163	27.94	47.23	175.54
15	288.15	59	1704.4	0.01069	0.81600	0.82998	32.97	59.97	220.22
20	293.15	68	2337.2	0.01475	0.83017	0.84983	38.00	75.42	273.32
25	298.15	77	3167.0	0.02016	0.84434	0.87162	43.03	94.38	337.39
30	303.15	86	4242.8	0.02731	0.85851	0.89609	48.07	117.8	415.65
35	308.15	95	5623.4	0.03673	0.87274	0.92406	53.10	147.3	512.17
40	313.15	104	7377.6	0.04911	0.88692	0.95665	58.14	184.5	532.31
45	318.15	113	9584.8	0.06536	0.90115	0.99535	63.17	232.0	783.06
50	323.15	122	12339	0.08678	0.91532	1.0423	68.21	293.1	975.27
55	328.15	131	15745	0.1152	0.92949	1.1007	73.25	372.9	1221.5
60	333.15	140	19925	0.1534	0.94372	1.1748	78.29	478.5	1543.5
65	338.15	149	25014	0.2055	0.95790	1.2721	83.33	621.4	1973.6
70	343.15	158	31167	0.2788	0.97207	1.4042	88.38	820.5	2564.8
75	348.15	167	38554	0.3858	0.98630	1.5924	93.42	1110	3412.8
80	353.15	176	47365	0.5519	1.0005	1.8791	98.47	1557	4710.9
85	358.15	185	57809	0.8363	1.0146	2.3632	103.5	2321	6892.6
90	363.15	194	70112	1.416	1.0288	3.3409	108.6	3876	11281

Note: The P_{s} column in this table gives the vapor pressure of pure water at temperature intervals of five degrees Celsius. For the latest data on vapor pressure at intervals of 0.1 deg C, from $0-100 \mathrm{deg} \mathrm{C}$, see "Vapor Pressure Equation for Water", A. Wexler and L. Greenspan, J. Res. Nat. Bur. Stand., 75A(3):213-229, May-June 1971.
${ }^{\text {a }}$ For very low barometric pressures and high wet-bulb temperatures, the values of h_{a} in this table are somewhat low; for corrections see ASHRAE Handbook of Fundamentals, 2001.

Source: Computed from Psychrometric Tables, in ASHRAE Handbook of Fundamentals, American Society of Heating, Refrigerating, and Air-Conditioning Engineers, 2001.

Symbols and Units:

$t=$ thermodynamic temperature, $\operatorname{deg} \mathrm{C}$
$T=$ thermodynamic temperature, K
$p v=R T, \mathrm{~kJ} / \mathrm{kg}$
$u_{o}=$ specific internal energy at zero pressure, $\mathrm{kJ} / \mathrm{kg}$
$h_{o}=$ specific enthalpy at zero pressure, $\mathrm{kJ} / \mathrm{kg}$
$s_{l}=$ specific entropy of semiperfect vapor at $0.1 \mathrm{MN} / \mathrm{m}^{2}, \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$
$\psi_{l}=$ specific Helmholtz free energy of semiperfect vapor at $0.1 \mathrm{MN} / \mathrm{m}^{2}, \mathrm{~kJ} / \mathrm{kg}$
$\psi_{l}=$ specific Helmholtz free energy of semiperfect vapor at $0.1 \mathrm{MN} / \mathrm{m}^{2}, \mathrm{~kJ} / \mathrm{kg}$
$\zeta_{l}=$ specific Gibbs free energy of semiperfect vapor at $0.1 \mathrm{MN} / \mathrm{m}^{2}$, $\mathrm{kJ} / \mathrm{kg}$
$p_{r}=$ relative pressure, pressure of semiperfect vapor at zero entropy, $\mathrm{TN} / \mathrm{m}^{2}$
$v_{r}=$ relative specific volume, specific volume of semiperfect vapor at zero entropy, $\mathrm{mm}^{3} / \mathrm{kg}$
$c_{p o}=$ specific heat capacity at constant pressure for zero pressure, $\mathrm{kJ} / \mathrm{kg} \cdot \mathrm{K}$
$c_{v o}=$ specific heat capacity at constant volume for zero pressure, $\mathrm{kJ} / \mathrm{kg} \cdot \mathrm{K}$
$k=c_{p o} / c_{v o}=$ isentropic exponent, $-(\partial \log p / \partial \log v)_{s}$

t	T	$p v$	u_{o}	h_{0}	s_{l}	ψ_{l}	ζ	p_{r}	v_{r}	$c_{p o}$	$c_{v o}$	k
0	273.15	126.06	2375.5	2501.5	6.8042	516.9	643.0	. 2529	498.4	1.8584	1.3969	1.3304
10	283.15	130.68	2389.4	2520.1	6.8711	443.9	574.6	. 2923	447.0	1.8601	1.3986	1.3300
20	293.15	135.29	2403.4	2538.7	6.9357	370.2	505.5	. 3363	402.4	1.8622	1.4007	1.3295
30	303.15	139.91	2417.5	2557.4	6.9982	296.0	435.9	. 3850	363.4	1.8647	1.4031	1.3289
40	313.15	144.52	2431.5	2576.0	7.0587	221.1	365.6	.4390	329.2	1.8674	1.4059	1.3283
50	323.15	149.14	2445.6	2594.7	7.1175	145.6	294.7	. 4986	299.1	1.8705	1.4090	1.3275
60	333.15	153.75	2459.7	2613.4	7.1745	69.5	223.2	. 5642	272.5	1.8738	1.4123	1.3268
70	343.15	158.37	2473.8	2632.2	7.2300	-7.2	151.2	. 6363	248.9	1.8774	1.4159	1.3259
80	353.15	162.98	2488.0	2651.0	7.2840	-84.3	78.6	. 7152	227.9	1.8812	1.4197	1.3251
90	363.15	167.60	2502.2	2669.8	7.3366	-162.1	5.5	. 8015	209.1	1.8852	1.4237	1.3242
100	373.15	172.21	2516.5	2688.7	7.3878	-240.3	-68.1	. 8957	192.26	1.8894	1.4279	1.3232
120	393.15	181.44	2545.1	2726.6	7.4867	-398.3	-216.8	1.1097	163.50	1.8983	1.4367	1.3212
140	413.15	190.67	2573.9	2764.6	7.5811	-558.2	-367.5	1.3617	140.03	1.9077	1.4462	1.3191
160	433.15	199.90	2603.0	2802.9	7.6715	-720.0	- 520.1	1.6564	120.69	1.9177	1.4562	1.3169
180	453.15	209.13	2632.2	2841.3	7.7583	-883.5	-674.4	1.9991	104.61	1.9281	1.4666	1.3147
200	473.15	218.4	2661.6	2880.0	7.8418	-1 048.7	-830.4	2.396	91.15	1.9389	1.4774	1.3124
300	573.15	264.5	2812.3	3076.8	8.2189	-1898.4	-1633.9	5.423	48.77	1.9975	1.5360	1.3005
400	673.15	310.7	2969.0	3279.7	8.5451	-2783.1	-2 472.5	10.996	28.25	2.0614	1.5999	1.2885
500	773.15	356.8	3132.4	3489.2	8.8352	-3699	-3 342	20.61	17.310	2.1287	1.6672	1.2768
600	873.15	403.0	3302.5	3705.5	9.0982	-4642	-4239	36.45	11.056	2.1980	1.7365	1.2658
700	973.15	449.1	3479.7	3928.8	9.3403	-5610	-5161	61.58	7.293	2.2683	1.8068	1.2554
800	1073.15	495.3	3663.9	4159.2	9.5655	-6601	-6106	100.34	4.936	2.3387	1.8771	1.2459
900	1173.15	541.4	3855.1	4396.5	9.7769	-7615	-7073	158.63	3.413	2.4078	1.9462	1.2371
1000	1273.15	587.6	4053.1	4640.6	9.9766	-8649	-8061	244.5	2.403	2.4744	2.0128	1.2993
1100	1373.15	633.7	4257.5	4891.2	10.1661	-9702	-9068	368.6	1.719	2.5369	2.0754	1.2224
1200	1473.15	679.9	4467.9	5147.8	10.3464	-10774	-10094	544.9	1.248	2.5938	2.1323	1.2164

Source: Adapted from Steam Tables, J.H. Keenan, F.G. Keyes, P.G. Hill, and J.G. Moore, John Wiley \& Sons, Inc., New York, 1969 (International Edition - Metric Units).

REFERENCE

For other steam tables in metric units, see Steam Tables in SI Units, Ministry of Technology, London, 1970.

TABLE A. 4 Properties of Saturated Water and Steam
Part a. Temperature Table

$\begin{gathered} \text { Temp. } \\ { }^{\circ} \mathbf{C} \text {. } \end{gathered}$	Press. bars	Specific Volume $\mathrm{mm}^{3} / \mathrm{kg}$		Internal Energy $\mathbf{k J} / \mathbf{k g}$		Enthalpy kJ/kg			Entropy $\mathbf{k J} / \mathbf{k g} \cdot \mathbf{K}$		$\begin{gathered} \text { Temp. } \\ { }^{\circ} \mathrm{C} \text {. } \end{gathered}$
		Sat. Liquid $v_{f} \times 10^{3}$	Sat. Vapor v_{1}	Sat. Liquid u_{i}	Sat. Vapor u_{8}	Sat. Liquid h_{f}	Evap. $h_{t_{4}}$	$\begin{gathered} \text { Sat. } \\ \text { Vapor } \\ h_{\mathbf{g}} \end{gathered}$		Sat. Vapor s_{8}	
. 01	0.00611	1.0002	206.136	0.00	2375.3	0.01	2501.3	2501.4	0.0000	9.1562	. 01
4	0.00813	1.0001	157.232	16.77	2380.9	16.78	2491.9	2508.7	0.0610	9.0514	4
5	0.00872	1.0001	147.120	20.97	2382.3	20.98	2489.6	2510.6	0.0761	9.0257	5
6	0.00935	1.0001	137.734	25.19	2383.6	25.20	2487.2	2512.4	0.0912	9.0003	6
8	0.01072	1.0002	120.917	33.59	2386.4	33.60	2482.5	2516.1	0.1212	8.9501	8
10	0.01228	1.0004	106.379	42.00	2389.2	42.01	2477.7	2519.8	0.1510	8.9008	10
11	0.01312	1.0004	99.857	46.20	2390.5	46.20	2475.4	2521.6	0.1658	8.8765	11
12	0.01402	1.0005	93.784	50.41	2391.9	50.41	2473.0	2523.4	0.1806	8.8524	12
13	0.01497	1.0007	88.124	54.60	2393.3	54.60	2470.7	2525.3	0.1953	8.8285	13
14	0.01598	1.0008	82.848	58.79	2394.7	58.80	2468.3	2527.1	0.2099	8.8048	14
15	0.01705	1.0009	77.926	62.99	2396.1	62.99	2465.9	2528.9	0.2245	8.7814	15
16	0.01818	1.0011	73.333	67.18	2397.4	67.19	2463.6	2530.8	0.2390	8.7582	16
17	0.01938	1.0012	69.044	71.38	2398.8	71.38	2461.2	2532.6	0.2535	8.7351	17
18	0.02064	1.0014	65.038	75.57	2400.2	75.58	2458.8	2534.4	0.2679	8.7123	18
19	0.02198	1.0016	61.293	79.76	2401.6	79.77	2456.5	2536.2	0.2823	8.6897	19
20	0.02339	1.0018	57.791	83.95	2402.9	83.96	2454.1	2538.1	0.2966	8.6672	20
21	0.02487	1.0020	54.514	88.14	2404.3	88.14	2451.8	2539.9	0.3109	8.6450	21
22	0.02645	1.0022	51.447	92.32	2405.7	92.33	2449.4	2541.7	0.3251	8.6229	22
23	0.02810	1.0024	48.574	96.51	2407.0	96.52	2447.0	2543.5	0.3393	8.6011	23
24	0.02985	1.0027	45.883	100.70	2408.4	100.70	2444.7	2545.4	0.3534	8.5794	24
25	0.03169	1.0029	43.360	104.88	2409.8	104.89	2442.3	2547.2	0.3674	8.5580	25
26	0.03363	1.0032	40.994	109.06	2411.1	109.07	2439.9	2549.0	0.3814	8.5367	26
27	0.03567	1.0035	38.774	113.25	2412.5	113.25	2437.6	2550.8	0.3954	8.5156	27
28	0.03782	1.0037	36.690	117.42	2413.9	117.43	2435.2	2552.6	0.4093	8.4946	28
29	0.04008	1.0040	34.733	121.60	2415.2	121.61	2432.8	2554.5	0.4231	8.4739	29
30	0.04246	1.0043	32.894	125.78	2416.6	125.79	2430.5	2556.3	0.4369	8.4533	30
31	0.04496	1.0046	31.165	129.96	2418.0	129.97	2428.1	2558.1	0.4507	8.4329	31
32	0.04759	1.0050	29.540	134.14	2419.3	134.15	2425.7	2559.9	0.4644	8.4127	32
33	0.05034	1.0053	28.011	138.32	2420.7	138.33	2423.4	2561.7	0.4781	8.3927	33
34	0.05324	1.0056	26.571	142.50	2422.0	142.50	2421.0	2563.5	0.4917	8.3728	34
35	0.05628	1.0060	25.216	146.67	2423.4	146.68	2418.6	2565.3	0.5053	8.3531	35
36	0.05947	1.0063	23.940	150.85	2424.7	150.86	2416.2	2567.1	0.5188	8.3336	36
38	0.06632	1.0071	21.602	159.20	2427.4	159.21	2411.5	2570.7	0.5458	8.2950	38
40	0.07384	1.0078	19.523	167.56	2430.1	167.57	2406.7	2574.3	0.5725	8.2570	40
45	0.09593	1.0099	15.258	188.44	2436.8	188.45	2394.8	2583.2	0.6387	8.1648	45

TABLE A. 4 (continued) Properties of Saturated Water and Steam

Temp. ${ }^{\circ} \mathrm{C}$	Press. bars	Specific Volume $\mathrm{m}^{3} / \mathrm{kg}$		Internal Energy kJ/kg		Enthalpy kJ/kg			Entropy $\mathbf{k J} / \mathbf{k g} \cdot \mathbf{K}$		Temp. ${ }^{\circ} \mathrm{C}$
		Sat. Liquid $v_{\mathrm{l}} \times 10^{3}$	Sat. Vapor v_{2}	Sat. Liquid u_{i}	Sat. Vapor u_{8}	Sat. Liquid h_{f}	Evap. h_{8}	Sat. Vapor h_{8}	Sat. Liquid s_{t}	Sat. Vapor s_{8}	
50	. 1235	1.0121	12.032	209.32	2443.5	209.33	2382.7	2592.1	. 7038	8.0763	50
55	. 1576	1.0146	9.568	230.21	2450.1	230.23	2370.7	2600.9	. 7679	7.9913	55
60	. 1994	1.0172	7.671	251.11	2456.6	251.13	2358.5	2609.6	. 8312	7.9096	60
65	. 2503	1.0199	6.197	272.02	2463.1	272.06	2346.2	2618.3	. 8935	7.8310	65
70	. 3119	1.0228	5.042	292.95	2469.6	292.98	2333.8	2626.8	. 9549	7.7553	70
75	. 3858	1.0259	4.131	313.90	2475.9	313.93	2321.4	2635.3	1.0155	7.6824	75
80	. 4739	1.0291	3.407	334.86	2482.2	334.91	2308.8	2643.7	1.0753	7.6122	80
85	. 5783	1.0325	2.828	355.84	2488.4	355.90	2296.0	2651.9	1.1343	7.5445	85
90	. 7014	1.0360	2.361	376.85	2494.5	376.92	2283.2	2660.1	1.1925	7.4791	90
95	. 8455	1.0397	1.982	397.88	2500.6	397.96	2270.2	2668.1	1.2500	7.4159	95
100	1.014	1.0435	1.673	418.94	2506.5	419.04	2257.0	2676.1	1.3069	7.3549	100
110	1.433	1.0516	1.210	461.14	2518.1	461.30	2230.2	2691.5	1.4185	7.2387	110
120	1.985	1.0603	0.8919	503.50	2529.3	503.71	2202.6	2706.3	1.5276	7.1296	120
130	2.701	1.0697	0.6685	546.02	2539.9	546.31	2174.2	2720.5	1.6344	7.0269	130
140	3.613	1.0797	0.5089	588.74	2550.0	589.13	2144.7	2733.9	1.7391	6.9299	140
150	4.758	1.0905	0.3928	631.68	2559.5	632.20	2114.3	2746.5	1.8418	6.8379	150
160	6.178	1.1020	0.3071	674.86	2568.4	675.55	2082.6	2758.1	1.9427	6.7502	160
170	7.917	1.1143	0.2428	718.33	2576.5	719.21	2049.5	2768.7	2.0419	6.6663	170
180	10.02	1.1274	0.1941	762.09	2583.7	763.22	2015.0	2778.2	2.1396	6.5857	180
190	12.54	1.1414	0.1565	806.19	2590.0	807.62	1978.8	2786.4	2.2359	6.5079	190
200	15.54	1.1565	0.1274	850.65	2595.3	852.45	1940.7	2793.2	2.3309	6.4323	200
210	19.06	1.1726	0.1044	895.53	2599.5	897.76	1900.7	2798.5	2.4248	6.3585	210
220	23.18	1.1900	0.08619	940.87	2602.4	943.62	1858.5	2802.1	2.5178	6.2861	220
230	27.95	1.2088	0.07158	986.74	2603.9	990.12	1813.8	2804.0	2.6099	6.2146	230
240	33.44	1.2291	0.05976	1033.2	2604.0	1037.3	1766.5	2803.8	2.7015	6.1437	240
250	39.73	1.2512	0.05013	1080.4	2602.4	1085.4	1716.2	2801.5	2.7927	6.0730	250
260	46.88	1.2755	0.04221	1128.4	2599.0	1134.4	1662.5	2796.6	2.8838	6.0019	260
270	54.99	1.3023	0.03564	1177.4	2593.7	1184.5	1605.2	2789.7	2.9751	5.9301	270
280	64.12	1.3321	0.03017	1227.5	2586.1	1236.0	1543.6	2779.6	3.0668	5.8571	280
290	74.36	1.3656	0.02557	1278.9	2576.0	1289.1	1477.1	2766.2	3.1594	5.7821	290
300	85.81	1.4036	0.02167	1332.0	2563.0	1344.0	1404.9	2749.0	3.2534	5.7045	300
320	112.7	1.4988	0.01549	1444.6	2525.5	1461.5	1238.6	2700.1	3.4480	5.5362	320
340	145.9	1.6379	0.01080	1570.3	2464.6	1594.2	1027.9	2622.0	3.6594	5.3357	340
360	186.5	1.8925	0.006945	1725.2	2351.5	1760.5	720.5	2481.0	3.9147	5.0526	360
374.14	220.9	3.155	0.003155	2029.6	2029.6	2099.3	0	2099.3	4.4298	4.4298	374.14

TABLE A. 4 (continued) Properties of Saturated Water and Steam
Part b. Pressure Table

Press. bars	Temp. ${ }^{\circ} \mathrm{C}$	Specific Volume $\mathrm{m}^{3} / \mathrm{kg}$		Internal Energy $\mathbf{k J} / \mathbf{k g}$		Enthalpy $\mathrm{kJ} / \mathrm{kg}$			Entropy $\mathbf{k J} / \mathbf{k g} \cdot \mathbf{K}$		Press. bars
		Sat. Liquid $v_{\mathrm{f}} \times 1 \mathbf{1 0}^{\mathbf{3}}$	Sat. Vapor v_{8}	Sat. Liquid u_{1}	Sat. Vapor μ_{8}	Sat. Liquid h_{f}	Evap. h_{18}	Sat. Vapor h_{k}	Sat. Liquid s_{f}	Sat. Vapor s_{8}	
0.04	28.96	1.0040	34.800	121.45	2415.2	121.46	2432.9	2554.4	0.4226	8.4746	0.04
0.06	36.16	1.0064	23.739	151.53	2425.0	151.53	2415.9	2567.4	0.5210	8.3304	0.06
0.08	41.51	1.0084	18.103	173.87	2432.2	173.88	2403.1	2577.0	0.5926	8.2287	0.08
0.10	45.81	1.0102	14.674	191.82	2437.9	191.83	2392.8	2584.7	0.6493	8.1502	0.10
0.20	60.06	1.0172	7.649	251.38	2456.7	251.40	2358.3	2609.7	0.8320	7.9085	0.20
0.30	69.10	1.0223	5.229	289.20	2468.4	289.23	2336.1	2625.3	0.9439	7.7686	0.30
0.40	75.87	1.0265	3.993	317.53	2477.0	317.58	2319.2	2636.8	1.0259	7.6700	0.40
0.50	81.33	1.0300	3.240	340.44	2483.9	340.49	2305.4	2645.9	1.0910	7.5939	0.50
0.60	85.94	1.0331	2.732	359.79	2489.6	359.86	2293.6	2653.5	1.1453	7.5320	0.60
0.70	89.95	1.0360	2.365	376.63	2494.5	376.70	2283.3	2660.0	1.1919	7.4797	0.70
0.80	93.50	1.0380	2.087	391.58	2498.8	391.66	2274.1	2665.8	1.2329	7.4346	0.80
0.90	96.71	1.0410	1.869	405.06	2502.6	405.15	2265.7	2670.9	1.2695	7.3949	0.90
1.00	99.63	1.0432	1.694	417.36	2506.1	417.46	2258.0	2675.5	1.3026	7.3594	1.00
1.50	111.4	1.0528	1.159	466.94	2519.7	467.11	2226.5	2693.6	1.4336	7.2233	1.50
2.00	120.2	1.0605	0.8857	504.49	2529.5	504.70	2201.9	2706.7	1.5301	7.1271	2.00
2.50	127.4	1.0672	0.7187	535.10	2537.2	535.37	2181.5	2716.9	1.6072	7.0527	2.50
3.00	133.6	1.0732	0.6058	561.15	2543.6	561.47	2163.8	2725.3	1.6718	6.9919	3.00
3.50	138.9	1.0786	0.5243	583.95	2546.9	584.33	2148.1	2732.4	1.7275	6.9405	3.50
4.00	143.6	1.0836	0.4625	604.31	2553.6	604.74	2133.8	2738.6	1.7766	6.8959	4.00
4.50	147.9	1.0882	0.4140	622.25	2557.6	623.25	2120.7	2743.9	1.8207	6.8565	4.50
5.00	151.9	1.0926	0.3749	639.68	2561.2	640.23	2108.5	2748.7	1.8607	6.8212	5.00
6.00	158.9	1.1006	0.3157	669.90	2567.4	670.56	2086.3	2756.8	1.9312	6.7600	6.00
7.00	165.0	1.1080	0.2729	696.44	2572.5	697.22	2066.3	2763.5	1.9922	6.7080	7.00
8.00	170.4	1.1148	0.2404	720.22	2576.8	721.11	2048.0	2769.1	2.0462	6.6628	8.00
9.00	175.4	1.1212	0.2150	741.83	2580.5	742.83	2031.1	2773.9	2.0946	6.6226	9.00
10.0	179.9	1.1273	0.1944	761.68	2583.6	762.81	2015.3	2778.1	2.1387	6.5863	10.0
15.0	198.3	1.1539	0.1318	843.16	2594.5	844.84	1947.3	2792.2	2.3150	6.4448	15.0
20.0	212.4	1.1767	0.09963	906.44	2600.3	908.79	1890.7	2799.5	2.4474	6.3409	20.0
25.0	224.0	1.1973	0.07998	959.11	2603.1	962.11	1841.0	2803.1	2.5547	6.2575	25.0
30.0	233.9	1.2165	0.06668	1004.8	2604.1	1008.4	1795.7	2804.2	2.6457	6.1869	30.0
35.0	242.6	1.2347	0.05707	1045.4	2603.7	1049.8	1753.7	2803.4	2.7253	6.1253	35.0
40.0	250.4	1.2522	0.04978	1082.3	2602.3	1087.3	1714.1	2801.4	2.7964	6.0701	40.0
45.0	257.5	1.2692	0.04406	1116.2	2600.1	1121.9	1676.4	2798.3	2.8610	6.0199	45.0
50.0	264.0	1.2859	0.03944	1147.8	2597.1	1154.2	1640.1	2794.3	2.9202	5.9734	50.0
60.0	275.6	1.3187	0.03244	1205.4	2589.7	1213.4	1571.0	2784.3	3.0267	5.8892	60.0
70.0	285.9	1.3513	0.02737	1257.6	2580.5	1267.0	1505.1	2772.1	3.1211	5.8133	70.0
80.0	295.1	1.3842	0.02352	1305.6	2569.8	1316.6	1441.3	2758.0	3.2068	5.7432	80.0
90.0	303.4	1.4178	0.02048	1350.5	2557.8	1363.3	1378.9	2742.1	3.2858	5.6772	90.0
100.0	311.1	1.4524	0.01803	1393.0	2544.4	1407.6	1317.1	2724.7	3.3596	5.6141	100.0
110.0	318.2	1.4886	0.01599	1433.7	2529.8	1450.1	1255.5	2705.6	3.4295	5.5527	110.0
120.0	324.8	1.5267	0.01426	1473.0	2513.7	1491.3	1193.6	2684.9	3.4962	5.4924	120.0
130.0	330.9	1.5671	0.01278	1511.1	2496.1	1531.5	1130.7	2662.2	3.5606	5.4323	130.0
140.0	336.8	1.6107	0.01149	1548.6	2476.8	1571.1	1066.5	2637.6	3.6232	5.3717	140.0
150.0	342.2	1.6581	0.01034	1585.6	2455.5	1610.5	1000.0	2610.5	3.6848	5.3098	150.0
160.0	347.4	1.7107	0.009306	1622.7	2431.7	1650.1	930.6	2580.6	3.7461	5.2455	160.0
170.0	352.4	1.7702	0.008364	1660.2	2405.0	1690.3	856.9	2547.2	3.8079	5.1777	170.0
180.0	357.1	1.8397	0.007489	1698.9	2374.3	1732.0	777.1	2509.1	3.8715	5.1044	180.0
190.0	361.5	1.9243	0.006657	1739.9	2338.1	1776.5	688.0	2464.5	3.9388	5.0228	190.0
200.0	365.8	2.036	0.005834	1785.6	2293.0	1826.3	583.4	2409.7	4.0139	4.9269	200.0
220.9	374.1	3.155	0.003155	2029.6	2029.6	2099.3	0	2099.3	4.4298	4.4298	220.9

TABLE A. 5 Properties of Superheated Steam

Symbols and Units:

$$
\begin{aligned}
T & =\text { temperature, }{ }^{\circ} \mathrm{C} & & h=\text { enthalpy, } \mathrm{kJ} / \mathrm{kg} \\
T_{\text {sat }} & =\text { saturation temperature, }{ }^{\circ} \mathrm{C} & & S=\text { entropy, } \mathrm{kJ} / \mathrm{kg} \cdot \mathrm{~K} \\
\mathrm{v} & =\text { specific volume }, \mathrm{m}^{3} / \mathrm{kg} & & p=\text { pressure, bar and } \mu \mathrm{Pa}
\end{aligned}
$$

$$
u=\text { internal energy, } \mathrm{kJ} / \mathrm{kg}
$$

$\begin{aligned} & T \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\stackrel{v}{\mathbf{m}^{3} / \mathbf{k g}}$	$\underset{\mathbf{k J} / \mathbf{k g}}{\mathbf{u}}$	$\begin{gathered} h \\ \mathrm{~kJ} / \mathrm{kg} \end{gathered}$	$\stackrel{\mathbf{s}}{\mathbf{k J} / \mathbf{k g} \cdot \mathbf{K}}$	$\underset{\mathbf{m}^{3} / \mathbf{v g}}{u}$	$\underset{\mathbf{k J} / \mathbf{k g}}{\mathbf{u}}$	$\begin{gathered} h \\ \mathrm{~kJ} / \mathrm{kg} \end{gathered}$	$\stackrel{\mathbf{s}}{\mathbf{k J} / \mathbf{k g} \cdot \mathbf{K}}$
	$\begin{aligned} & p=0.06 \mathrm{bar}=0.006 \mathrm{MPa} \\ & \left(T_{\mathrm{m}}=36.16^{\circ} \mathrm{C}\right) \end{aligned}$			$\begin{aligned} & p=0.35 \mathrm{bar}=0.035 \mathrm{MPa} \\ & \left(T_{\mathrm{at}}=72.69^{\circ} \mathrm{C}\right) \end{aligned}$				
Sat.	23.739	2425.0	2567.4	8.3304	4.526	2473.0	2631.4	7.7158
80	27.132	2487.3	2650.1	8.5804	4.625	2483.7	2645.6	7.7564
120	30.219	2544.7	2726.0	8.7840	5.163	2542.4	2723.1	7.9644
160	33.302	2602.7	2802.5	8.9693	5.696	2601.2	2800.6	8.1519
200	36.383	2661.4	2879.7	9.1398	6.228	2660.4	2878.4	8.3237
240	39.462	2721.0	2957.8	9.2982	6.758	2720.3	2956.8	8.4828
280	42.540	2781.5	3036.8	9.4464	7.287	2780.9	3036.0	8.6314
320	45.618	2843.0	3116.7	9.5859	7.815	2842.5	3116.1	8.7712
360	48.696	2905.5	3197.7	9.7180	8.344	2905.1	3197.1	8.9034
400	51.774	2969.0	3279.6	9.8435	8.872	2968.6	3279.2	9.0291
440	54.851	3033.5	3362.6	9.9633	9.400	3033.2	3362.2	9.1490
500	59.467	3132.3	3489.1	10.1336	10.192	3132.1	3488.8	9.3194

	$\begin{aligned} & p=0.70 \mathrm{bar}=0.07 \mathrm{MPa} \\ & \left(T_{\mathrm{ut}}=89.95^{\circ} \mathrm{C}\right) \end{aligned}$				$\begin{aligned} & p=1.0 \mathrm{bar}=0.10 \mathrm{MPa} \\ & \left(T_{\mathrm{st}}=99.63^{\circ} \mathrm{C}\right) \end{aligned}$			
Sat.	2.365	2494.5	2660.0	7.4797	1.694	2506.1	2675.5	7.3594
100	2.434	2509.7	2680.0	7.5341	1.696	2506.7	2676.2	7.3614
120	2.571	2539.7	2719.6	7.6375	1.793	2537.3	2716.6	7.4668
160	2.841	2599.4	2798.2	7.8279	1.984	2597.8	2796.2	7.6597
200	3.108	2659.1	2876.7	8.0012	2.172	2658.1	2875.3	7.8343
240	3.374	2719.3	2955.5	8.1611	2.359	2718.5	2954.5	7.9949
280	3.640	2780.2	3035.0	8.3162	2.546	2779.6	3034.2	8.1445
320	3.905	2842.0	3115.3	8.4504	2.732	2841.5	3114.6	8.2849
360	4.170	2904.6	3196.5	8.5828	2.917	2904.2	3195.9	8.4175
400	4.434	2968.2	3278.6	8.7086	3.103	2967.9	3278.2	8.5435
440	4.698	3032.9	3361.8	8.8286	3.288	3032.6	3361.4	8.6636
500	5.095	3131.8	3488.5	8.9991	3.565	3131.6	3488.1	8.8342

	$\begin{aligned} & p=1.5 \text { bars }=0.15 \mathrm{MPa} \\ & \left(T_{\mathrm{sta}}=111.37^{\circ} \mathrm{C}\right) \end{aligned}$				$\begin{aligned} & p=3.0 \text { bars }=0.30 \mathrm{MPa} \\ & \left(T_{\mathrm{sa}}=133.55^{\circ} \mathrm{C}\right) \end{aligned}$			
Sat.	1.159	2519.7	2693.6	7.2233	0.606	2543.6	2725.3	6.9919
120	1.188	2533.3	2711.4	7.2693				
160	1.317	2595.2	2792.8	7.4665	0.651	2587.1	2782.3	7.1276
200	1.444	2656.2	2872.9	7.6433	0.716	2650.7	2865.5	7.3115
240	1.570	2717.2	2952.7	7.8052	0.781	2713.1	2947.3	7.4774
280	1.695	2778.6	3032.8	7.9555	0.844	2775.4	3028.6	7.6299
320	1.819	2840.6	3113.5	8.0964	0.907	2838.1	3110.1	7.7722
360	1.943	2903.5	3195.0	8.2293	0.969	2901.4	3192.2	7.9061
400	2.067	2967.3	3277.4	8.3555	1.032	2965.6	3275.0	8.0330
440	2.191	3032.1	3360.7	8.4757	1.094	3030.6	3358.7	8.1538
500	2.376	3131.2	3487.6	8.6466	1.187	3130.0	3486.0	8.3251
600	2.685	3301.7	3704.3	8.9101	1.341	3300.8	3703.2	8.5892

TABLE A. 5 (continued) Properties of Superheated Steam
Symbols and Units:

$$
\begin{array}{rlrl}
T & =\text { temperature, }{ }^{\circ} \mathrm{C} & & h \\
T_{\text {sat }} & =\text { enthalpy, } \mathrm{kJ} / \mathrm{karg} \cdot \mathrm{~kg} \\
\mathrm{v} & =\text { specificn temperature, }{ }^{\circ} \mathrm{C} & & S=\text { entropy, } \mathrm{kJ} / \mathrm{kg} \cdot \mathrm{~K} \\
\mathrm{~m}^{3} / \mathrm{kg} & & p=\text { pressure, bar and } \mu \mathrm{Pa}
\end{array}
$$

$$
u=\text { internal energy, } \mathrm{kJ} / \mathrm{kg}
$$

$p=5.0$ bars $=0.50 \mathrm{MPa}$
($T_{\mathrm{mat}}=151.86^{\circ} \mathrm{C}$)

Sat.	0.3749	2561.2	2748.7	6.8213
180	0.4045	2609.7	2812.0	6.9656
200	0.4249	2642.9	2855.4	7.0592
240	0.4646	2707.6	2939.9	7.2307
280	0.5034	2771.2	3022.9	7.3865
320	0.5416	2834.7	3105.6	7.5308
360	0.5796	2898.7	3188.4	7.6660
400	0.6173	2963.2	3271.9	7.7938
440	0.6548	3028.6	3356.0	7.9152
500	0.7109	3128.4	3483.9	8.0873
600	0.8041	3299.6	3701.7	8.3522
700	0.8969	3477.5	3925.9	8.5952

| 700 | 0.8969 | 3477.5 | 3925.9 | 8.5952 |
| :--- | :--- | :--- | :--- | :--- | :--- |

$p=7.0$ bars $=0.70 \mathrm{MPa}$
($T_{\mathrm{at}}=164.97^{\circ} \mathrm{C}$)

0.2729	2572.5	2763.5	6.7080
0.2847	2599.8	2799.1	6.7880
0.2999	2634.8	2844.8	6.8865
0.3292	2701.8	2932.2	7.0641
0.3574	2766.9	3017.1	7.2233
0.3852	2831.3	3100.9	7.3697
0.4126	2895.8	3184.7	7.5063
0.4397	2960.9	3268.7	7.6350
0.4667	3026.6	3353.3	7.7571
0.5070	3126.8	3481.7	7.9299
0.5738	3298.5	3700.2	8.1956
0.6403	3476.6	3924.8	8.4391

	$\begin{aligned} & p=10.0 \text { bars }=1.0 \mathrm{MPa} \\ & \left(T_{\mathrm{mt}}=179.91^{\circ} \mathrm{C}\right) \end{aligned}$			$\begin{aligned} & p=15.0 \text { bars }=1.5 \mathrm{MPa} \\ & \left(T_{\mathrm{ma}}=198.32^{\circ} \mathrm{C}\right) \end{aligned}$				
Sat.	0.1944	2583.6	2778.1	6.5865	0.1318	2594.5	2792.2	6.4448
200	0.2060	2621.9	2827.9	6.6940	0.1325	2598.1	2796.8	6.4546
240	0.2275	2692.9	2920.4	6.8817	0.1483	2676.9	2899.3	6.6628
280	0.2480	2760.2	3008.2	7.0465	0.1627	2748.6	2992.7	6.8381
320	0.2678	2826.1	3093.9	7.1962	0.1765	2817.1	3081.9	6.9938
360	0.2873	2891.6	3178.9	7.3349	0.1899	2884.4	3169.2	7.1363
400	0.3066	2957.3	3263.9	7.4651	0.2030	2951.3	3255.8	7.2690
440	0.3257	3023.6	3349.3	7.5883	0.2160	3018.5	3342.5	7.3940
500	0.3541	3124.4	3478.5	7.7622	0.2352	3120.3	3473.1	7.5698
540	0.3729	3192.6	3565.6	7.8720	0.2478	3189.1	3560.9	7.6805
600	0.4011	3296.8	3697.9	8.0290	0.2668	3293.9	3694.0	7.8385
640	0.4198	3367.4	3787.2	8.1290	0.2793	3364.8	3783.8	7.9391

	$\begin{aligned} & p=20.0 \text { bars }=2.0 \mathrm{MPa} \\ & \left(T_{\text {nat }}=212.42^{\circ} \mathrm{C}\right) \end{aligned}$				$\begin{aligned} & p=30.0 \text { bars }=3.0 \mathrm{MPa} \\ & \left(T_{\mathrm{at}}=233.90^{\circ} \mathrm{C}\right) \end{aligned}$			
Sat.	0.0996	2600.3	2799.5	6.3409	0.0667	2604.1	2804.2	6.1869
240	0.1085	2659.6	2876.5	6.4952	0.0682	2619.7	2824.3	6.2265
280	0.1200	2736.4	2976.4	6.6828	0.0771	2709.9	2941.3	6.4462
320	0.1308	2807.9	3069.5	6.8452	0.0850	2788.4	3043.4	6.6245
360	0.1411	2877.0	3159.3	6.9917	0.0923	2861.7	3138.7	6.7801
400	0.1512	2945.2	3247.6	7.1271	0.0994	2932.8	3230.9	6.9212
440	0.1611	3013.4	3335.5	7.2540	0.1062	3002.9	3321.5	7.0520
500	0.1757	3116.2	3467.6	7.4317	0.1162	3108.0	3456.5	7.2338
540	0.1853	3185.6	3556.1	7.5434	0.1227	3178.4	3546.6	7.3474
600	0.1996	3290.9	3690.1	7.7024	0.1324	3285.0	3682.3	7.5085
640	0.2091	3362.2	3780.4	7.8035	0.1388	3357.0	3773.5	7.6106
700	0.2232	3470.9	3917.4	7.9487	0.1484	3466.5	3911.7	7.7571

TABLE A. 5 (continued) Properties of Superheated Steam
Symbols and Units:

$$
\begin{array}{rlrl}
T & =\text { temperature, }{ }^{\circ} \mathrm{C} & & h \\
T_{\text {sat }} & =\text { enthalpy, } \mathrm{kJ} / \mathrm{karg} \cdot \mathrm{~kg} \\
\mathrm{v} & =\text { specificn temperature, }{ }^{\circ} \mathrm{C} & & S=\text { entropy, } \mathrm{kJ} / \mathrm{kg} \cdot \mathrm{~K} \\
\mathrm{~m}^{3} / \mathrm{kg} & & p=\text { pressure, bar and } \mu \mathrm{Pa}
\end{array}
$$

$$
u=\text { internal energy, } \mathrm{kJ} / \mathrm{kg}
$$

$\begin{gathered} T \\ { }^{\circ} \mathrm{C} \end{gathered}$	$\stackrel{v}{\mathrm{~m}^{3} / \mathrm{kg}}$	$\begin{gathered} \boldsymbol{u} / \mathbf{k g} \\ \mathbf{k J} / \mathbf{k g} \end{gathered}$	$\begin{gathered} h \\ \mathbf{k J} / \mathbf{k g} \end{gathered}$	$\stackrel{s}{\mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}}$	$\stackrel{\nu}{\mathrm{m}^{3} / \mathrm{kg}}$	$\stackrel{u}{\mathbf{k J} / \mathbf{k g}}$	$\stackrel{h}{\mathbf{k J} / \mathbf{k g}}$	$\stackrel{\mathbf{s}}{\mathbf{k J} / \mathbf{k g} \cdot \mathbf{K}}$
	$\begin{aligned} & p=40 \text { bars }=4.0 \mathrm{MPa} \\ & \left(T_{\mathrm{ma}}=250.4^{\circ} \mathrm{C}\right) \end{aligned}$				$\begin{aligned} & p=60 \text { bars }=6.0 \mathrm{MPa} \\ & \left(T_{\mathrm{at}}=275.64^{\circ} \mathrm{C}\right) \end{aligned}$			
Sat.	0.04978	2602.3	2801.4	6.0701	0.03244	2589.7	2784.3	5.8892
280	0.05546	2680.0	2901.8	6.2568	0.03317	2605.2	2804.2	5.9252
320	0.06199	2767.4	3015.4	6.4553	0.03876	2720.0	2952.6	6.1846
360	0.06788	2845.7	3117.2	6.6215	0.04331	2811.2	3071.1	6.3782
400	0.07341	2919.9	3213.6	6.7690	0.04739	2892.9	3177.2	6.5408
440	0.07872	2992.2	3307.1	6.9041	0.05122	2970.0	3277.3	6.6853
500	0.08643	3099.5	3445.3	7.0901	0.05665	3082.2	3422.2	6.8803
540	0.09145	3171.1	3536.9	7.2056	0.06015	3156.1	3517.0	6.9999
600	0.09885	3279.1	3674.4	7.3688	0.06525	3266.9	3658.4	7.1677
640	0.1037	3351.8	3766.6	7.4720	0.06859	3341.0	3752.6	7.2731
700	0.1110	3462.1	3905.9	7.6198	0.07352	3453.1	3894.1	7.4234
740	0.1157	3536.6	3999.6	7.7141	0.07677	3528.3	3989.2	7.5190

	$\begin{aligned} & p=80 \text { bars }=8.0 \mathrm{MPa}^{p} \\ & \left(T_{a t}=295.06^{\circ} \mathrm{C}\right) \end{aligned}$				$\begin{aligned} & p=100 \text { bars }=10.0 \mathrm{MPa} \\ & \left(T_{\mathrm{ma}}=311.06^{\circ} \mathrm{C}\right) \end{aligned}$			
Sat.	0.02352	2569.8	2758.0	5.7432	0.01803	2544.4	2724.7	5.6141
320	0.02682	2662.7	2877.2	5.9489	0.01925	2588.8	2781.3	5.7103
360	0.03089	2772.7	3019.8	6.1819	0.02331	2729.1	2962.1	6.0060
400	0.03432	2863.8	3138.3	6.3634	0.02641	2832.4	3096.5	6.2120
440	0.03742	2946.7	3246.1	6.5190	0.02911	2922.1	3213.2	6.3805
480	0.04034	3025.7	3348.4	6.6586	0.03160	3005.4	3321.4	6.5282
520	0.04313	3102.7	3447.7	6.7871	0.03394	3085.6	3425.1	6.6622
560	0.04582	3178.7	3545.3	6.9072	0.03619	3164.1	3526.0	6.7864
600	0.04845	3254.4	3642.0	7.0206	0.03837	3241.7	3625.3	6.9029
640	0.05102	3330.1	3738.3	7.1283	0.04048	3318.9	3723.7	7.0131
700	0.05481	3443.9	3882.4	7.2812	0.04358	3434.7	3870.5	7.1687
740	0.05729	3520.4	3978.7	7.3782	0.04560	3512.1	3968.1	7.2670

	$\begin{aligned} & p=120 \text { bars }=12.0 \mathrm{MPa} \\ & \left(T_{\mathrm{st}}=324.75^{\circ} \mathrm{C}\right) \end{aligned}$				$\begin{aligned} & p=140 \text { bars }=14.0 \mathrm{MPa} \\ & \left(T_{\mathrm{nt}}=336.75^{\circ} \mathrm{C}\right) \end{aligned}$			
Sat.	0.01426	2513.7	2684.9	5.4924	0.01149	2476.8	2637.6	5.3717
360	0.01811	2678.4	2895.7	5.8361	0.01422	2617.4	2816.5	5.6602
400	0.02108	2798.3	3051.3	6.0747	0.01722	2760.9	3001.9	5.9448
440	0.02355	2896.1	3178.7	6.2586	0.01954	2868.6	3142.2	6.1474
480	0.02576	2984.4	3293.5	6.4154	0.02157	2962.5	3264.5	6.3143
520	0.02781	3068.0	3401.8	6.5555	0.02343	3049.8	3377.8	6.4610
560	0.02977	3149.0	3506.2	6.6840	0.02517	3133.6	3486.0	6.5941
600	0.03164	3228.7	3608.3	6.8037	0.02683	3215.4	3591.1	6.7172
640	0.03345	3307.5	3709.0	6.9164	0.02843	3296.0	3694.1	6.8326
700	0.03610	3425.2	3858.4	7.0749	0.03075	3415.7	3846.2	6.9939
740	0.03781	3503.7	3957.4	7.1746	0.03225	3495.2	3946.7	7.0952

TABLE A. 6 Chemical, Physical, and Thermal Properties of Gases: Gases and Vapors, Including Fuels and Refrigerants, English and SI Units

\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Common name (s) \\
Chemical formula \\
Refrigerant number
\end{tabular} \& Air \([\) mixture \(]\)

729 \& \[
$$
\begin{gathered}
\text { Hydrogen } \\
\mathrm{H}_{2} \\
702
\end{gathered}
$$

\] \& | Methane |
| :--- |
| CH_{4} |
| 50 | \& \[

$$
\begin{gathered}
\text { Nitrogen } \\
N_{2} \\
728
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\text { Oxygen } \\
\mathrm{O}_{2} \\
732
\end{gathered}
$$
\]

\hline \multicolumn{6}{|l|}{CHEMICAL AND PHYSICAL PROPERTIES}

\hline Molecular weight \& 28.966 \& 2.016 \& 16.044 \& 28.0134 \& 31.9988

\hline Specific gravity, air $=1$ \& 1.00 \& 0.070 \& 0.554 \& 0.967 \& 1.105

\hline Specific volume, $\mathrm{ft}^{3} / \mathrm{lb}$ \& 13.5 \& 194. \& 24.2 \& 13.98 \& 12.24

\hline Specific volume, $\mathrm{m}^{3} / \mathrm{kg}$ \& 0.842 \& 12.1 \& 1.51 \& 0.872 \& 0.764

\hline Density of liquid (at atm bp), $\mathrm{lb} / \mathrm{ft}^{3}$ \& 54.6 \& 4.43 \& 26.3 \& 50.46 \& 71.27

\hline Density of liquid (at atm bp), $\mathrm{kg} / \mathrm{m}^{3}$ \& 879. \& 71.0 \& 421. \& 808.4 \& 1142.

\hline Vapor pressure at 25 deg C , psia \& \& \& \& \&

\hline Vapor pressure at $25 \mathrm{deg} \mathrm{C}, \mathrm{MN} / \mathrm{m}^{2}$ \& \& \& \& \&

\hline Viscosity (abs), lbm/ft \sec \& 12.1×10^{-6} \& 6.05×10^{-6} \& 7.39×10^{-6} \& 12.1×10^{-6} \& 13.4×10^{-6}

\hline Viscosity (abs), centipoises ${ }^{\text {a }}$ \& 0.018 \& 0.009 \& 0.011 \& 0.018 \& 0.020

\hline Sound velocity in gas, $\mathrm{m} / \mathrm{sec}$ \& 346 \& 1315. \& 446. \& 353. \& 329.

\hline \multicolumn{6}{|l|}{THERMAL AND THERMODYNAMIC PROPERTIES}

\hline $$
\begin{aligned}
& \text { Specific heat, } c_{p}, \mathrm{Btu} / \mathrm{lb} \cdot \mathrm{deg} \mathrm{~F} \\
& \text { or cal/g } \cdot \mathrm{deg} \mathrm{C}
\end{aligned}
$$ \& 0.2403 \& 3.42 \& 0.54 \& 0.249 \& 0.220

\hline Specific heat, $c_{p}, \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$ \& 1005. \& 14310. \& 2260. \& 1040. \& 920.

\hline Specific heat ratio, c_{p} / c_{v} \& 1.40 \& 1.405 \& 1.31 \& 1.40 \& 1.40

\hline Gas constant $R, \mathrm{ft}-\mathrm{l} / / \mathrm{l} \cdot \mathrm{deg} \mathrm{R}$ \& 53.3 \& 767. \& 96. \& 55.2 \& 48.3

\hline Gas constant $R, \mathrm{~J} / \mathrm{kg} \cdot \mathrm{deg} \mathrm{C}$ \& 286.8 \& 4126. \& 518. \& 297. \& 260.

\hline Thermal conductivity, Btu/hrft deg F \& 0.0151 \& 0.105 \& 0.02 \& 0.015 \& 0.015

\hline Thermal conductivity, W/m.deg C \& 0.026 \& 0.0182 \& 0.035 \& 0.026 \& 0.026

\hline Boiling point (sat 14.7 psia), deg F \& -320 \& -423. \& -259. \& - 320.4 \& -297.3

\hline Boiling point (sat 760 mm), deg C \& - 195 \& 20.4 K \& -434.2 \& -195.8 \& -182.97

\hline Latent heat of evap (at bp), Btu/lb \& 88.2 \& 192. \& 219.2 \& 85.5 \& $$
91.7
$$

\hline Latent heat of evap (at bp), J / kg \& 205000. \& 447000. \& 510000. \& 199000. \& $$
213000 .
$$

\hline Freezing (melting) point, deg F (1 atm) \& -357.2 \& -434.6 \& -296.6 \& -346. \& -361.1

\hline Freezing (melting) point, deg C (1 atm) \& -216.2 \& -259.1 \& -182.6 \& -210 . \& -218.4

\hline Latent heat of fusion, Btu/lb \& 10.0 \& 25.0 \& 14. \& 11.1 \& 5.9

\hline Latent heat of fusion, J / kg \& 23200 \& 58000. \& 32600. \& 25800. \& $$
13700 .
$$

\hline Critical temperature, deg F \& -220.5 \& - 399.8 \& -116. \& -232.6 \& $$
-181.5
$$

\hline Critical temperature, $\operatorname{deg} \mathrm{C}$ \& -140.3 \& - 240.0 \& -82.3 \& -147. \& - 118.6

\hline Critical pressure, psia \& 550. \& 189. \& 673. \& 493. \& 726.

\hline Critical pressure, $\mathrm{MN} / \mathrm{m}^{2}$ \& 3.8 \& 1.30 \& 4.64 \& 3.40 \& 5.01

\hline Critical volume, $\mathrm{ft}^{3} / \mathrm{lb}$ \& 0.050 \& 0.53 \& 0.099 \& 0.051 \& 0.040

\hline Critical volume, $\mathrm{m}^{3} / \mathrm{kg}$ \& 0.003 \& 0.033 \& 0.0062 \& 0.00318 \& 0.0025

\hline Flammable (yes or no) \& No \& Yes \& Yes \& No \& No

\hline Heat of combustion, $\mathrm{Btu} / \mathrm{ft}^{3}$ \& - \& 320. \& 985. \& - \& -

\hline Heat of combustion, $\mathrm{Btu} / \mathrm{lb}$ \& - \& 62050. \& 2290. \& - \& -

\hline Heat of combustion, $\mathrm{kJ} / \mathrm{kg}$ \& - \& 144000. \& \& - \& -

\hline
\end{tabular}

[^0]Note: The properties of pure gases are given at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}, 298 \mathrm{~K}\right)$ and atmospheric pressure (except as stated).

TABLE A. 7 Ideal Gas Properties of Dry Air
Part a. SI Units

T(K), h and $u(\mathbf{k J} / \mathbf{k g}), s^{\circ}(\mathbf{k J} / \mathbf{k g} \cdot \mathrm{K})$											
T	h	$p_{\text {r }}$	u	0	s°	T	h	p_{1}	u	v_{r}	$s^{\prime \prime}$
200	199.97	0.3363	142.56	1707.0	1.29559	450	451.80	5.775	322.62	223.6	2.11161
210	209.97	0.3987	149.69	1512.0	1.34444	460	462.02	6.245	329.97	211.4	2.13407
220	219.97	0.4690	156.82	1346.0	1.39105	470	472.24	6.742	337.32	200.1	2.15604
230	230.02	0.5477	164.00	1205.0	1.43557	480	482.49	7.268	344.70	189.5	2.17760
240	240.02	0.6355	171.13	1084.0	1.47824	490	492.74	7.824	352.08	179.7	2.19876
250	250.05	0.7329	178.28	979.0	1.51917	500	503.02	8.411	359.49	170.6	2.21952
260	260.09	0.8405	185.45	887.8	1.55848	510	513.32	9.031	366.92	162.1	2.23993
270	270.11	0.9590	192.60	808.0	1.59634	520	523.63	9.684	374.36	154.1	2.25997
280	280.13	1.0889	199.75	738.0	1.63279	530	533.98	10.37	381.84	146.7	2.27967
285	285.14	1.1584	203.33	706.1	1.65055	540	544.35	11.10	389.34	139.7	2.29906
290	290.16	1.2311	206.91	676.1	1.66802	550	554.74	11.86	396.86	133.1	2.31809
295	295.17	1.3068	210.49	647.9	1.68515	560	565.17	12.66	404.42	127.0	2.33685
300	300.19	1.3860	214.07	621.2	1.70203	570	575.59	13.50	411.97	121.2	2.35531
305	305.22	1.4686	217.67	596.0	1.71865	580	586.04	14.38	419.55	115.7	2.37348
310	310.24	1.5546	221.25	572.3	1.73498	590	596.52	15.31	427.15	110.6	2.39140
315	315.27	1.6442	224.85	549.8	1.75106	600	607.02	16.28	434.78	105.8	2.40902
320	320.29	1.7375	228.42	528.6	1.76690	610	617.53	17.30	442.42	101.2	2.42644
325	325.31	1.8345	232.02	508.4	1.78249	620	628.07	18.36	450.09	96.92	2.44356
330	330.34	1.9352	235.61	489.4	1.79783	630	638.63	19.84	457.78	92.84	2.46048
340	340.42	2.149	242.82	454.1	1.82790	640	649.22	20.64	465.50	88.99	2.47716
350	350.49	2.379	250.02	422.2	1.85708	650	659.84	21.86	473.25	85.34	2.49364
360	360.58	2.626	257.24	393.4	1.88543	660	670.47	23.13	481.01	81.89	2.50985
370	370.67	2.892	264.46	367.2	1.91313	670	681.14	24.46	488.81	78.61	2.52589
380	380.77	3.176	271.69	343.4	1.94001	680	691.82	25.85	496.62	75.50	2.54175
390	390.88	3.481	278.93	321.5	1.96633	690	702.52	27.29	504.45	72.56	2.55731
400	400.98	3.806	286.16	301.6	1.99194	700	713.27	28.80	512.33	69.76	2.57277
410	411.12	4.153	293.43	283.3	2.01699	710	724.04	30.38	520.23	67.07	2.58810
420	421.26	4.522	300.69	266.6	2.04142	720	734.82	32.02	528.14	64.53	2.60319
430	431.43	4.915	307.99	251.1	2.06533	730	745.62	33.72	536.07	62.13	2.61803
440	441.61	5.332	315.30	236.8	2.08870	740	756.44	35.50	544.02	59.82	2.63280
750	767.29	37.35	551.99	57.63	2.64737	1300	1395.97	330.9	1022.82	11.275	3.27345
760	778.18	39.27	560.01	55.54	2.66176	1320	1419.76	352.5	1040.88	10.747	3.29160
770	789.11	41.31	568.07	53.39	2.67595	1340	1443.60	375.3	1058.94	10.247	3.30959
780	809.03	43.35	576.12	51.64	2.69013	1360	1467.49	399.1	1077.10	9.780	3.32724
790	810.99	45.55	584.21	49.86	2.70400	1380	1491.44	424.2	1095.26	9.337	3.34474
800	821.95	47.75	592.30	48.08	2.71787	1400	1515.42	450.5	1113.52	8.919	3.36200
820	843.98	52.59	608.59	44.84	2.74504	1420	1539.44	478.0	1131.77	8.526	3.37901
840	866.08	57.60	624.95	41.85	2.77170	1440	1563.51	506.9	1150.13	8.153	3.39586
860	888.27	63.09	641.40	39.12	2.79783	1460	1587.63	537.1	1168.49	7.801	3.41247
880	910.56	68.98	657.95	36.61	2.82344	1480	1611.79	568.8	1186.95	7.468	3.42892
900	932.93	75.29	674.58	34.31	2.84856	1500	1635.97	601.9	1205.41	7.152	3.44516
920	955.38	82.05	691.28	32.18	2.87324	1520	1660.23	636.5	1223.87	6.854	3.46120
940	977.92	89.28	708.08	30.22	2.89748	1540	1684.51	672.8	1242.43	6.569	3.47712
960	1000.55	97.00	725.02	28.40	2.92128	1560	1708.82	710.5	1260.99	6.301	3.49276
980	1023.25	105.2	741.98	26.73	2.94468	1580	1733.17	750.0	1279.65	6.046	3.50829
$1000{ }^{\circ}$	1046.04	114.0	758.94	25.17	2.96770	1600	1757.57	791.2	1298.30	5.804	3.52364
1020	1068.89	123.4	776.10	23.72	2.99034	1620	1782.00	834.1	1316.96	5.574	3.53879
1040	1091.85	133.3	793.36	22.39	3.01260	1640	1806.46	878.9	1335.72	5.355	3.55381
1060	1114.86	143.9	810.62	21.14	3.03449	1660	1830.96	925.6	1354.48	5.147	3.56867
1080	1137.89	155.2	827.88	19.98	3.05608	1680	1855.50	974.2	1373.24	4.949	3.58335
1100	1161.07	167.1	845.33	18.896	3.07732	1700	1880.1	1025	1392.7	4.761	3.5979
1120	1184.28	179.7	862.79	17.886	3.09825	1750	1941.6	1161	1439.8	4.328	3.6336
1140	1207.57	193.1	880.35	16.946	3.11883	1800	2003.3	1310	1487.2	3.944	3.6684
1160	1230.92	207.2	897.91	16.064	3.13916	1850	2065.3	1475	1534.9	3.601	3.7023
1180	1254.34	222.2	915.57	15.241	3.15916	1900	2127.4	1655	1582.6	3.295	3.7354
1200	1277.79	238.0	933.33	14.470	3.17888	1950	2189.7	1852	1630.6	3:022	3.7677
1220	1301.31	254.7	951.09	13.747	3.19834	2000	2252.1	2068	1678.7	2.776	3.7994
1240	1324.93	272.3	968.95	13.069	3.21751	2050	2314.6	2303	1726.8	2.555	3.8303
1260	1348.55	290.8	986.90	12.435	3.23638	2100	2377.4	2559	1775.3	2.356	3.8605
1280	1372.24	310.4	1004.76	11.835	. 3.25510	2150	2440.3	2837	1823.8	2.175	3.8901
						$\begin{array}{r} 2200 \\ 2250 \\ \hline \end{array}$	$\begin{aligned} & 2503.2 \\ & 2566.4 \end{aligned}$	$\begin{aligned} & 3138 \\ & 3464 \\ & \hline \end{aligned}$	$\begin{aligned} & 1872.4 \\ & 1921.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.012 \\ & 1.864 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.9191 \\ & 3.9474 \end{aligned}$

TABLE A. 7 (continued) Ideal Gas Properties of Dry Air
Part b. English Units
$T\left({ }^{\circ} \mathrm{R}\right), h$ and $u(\mathrm{Btu} / \mathrm{lb}), s^{\circ}\left(\mathrm{Btu} / \mathrm{lb} \cdot{ }^{\circ} \mathrm{R}\right)$

T	h	p_{r}	u	ν_{r}	5°	T	h	p_{r}	u	v_{r}	5
360	85.97	0.3363	61.29	396.6	0.50369	940	226.11	9.834	161.68	35.41	0.73509
380	90.75	0.4061	64.70	346.6	0.51663	960	231.06	10.61	165.26	33.52	0.74030
400	95.53	0.4858	68.11	305.0	0.52890	980	236.02	11.43	168.83	31.76	0.74540
420	100.32	0.5760	71.52	270.1	0.54058	1000	240.98	12.30	172.43	30.12	0.75042
440	105.11	0.6776	74.93	240.6	0.55172	1040	250.95	14.18	179.66	27.17	0.76019
460	109.90	0.7913	78.36	215.33	0.56235	1080	260.97	16.28	186.93	24.58	0.76964
480	114.69	0.9182	81.77	193.65	0.57255	1120	271.03	18.60	194.25	22.30	0.77880
500	119.48	1.0590	85.20	174.90	0.58233	1160	281.14	21.18	201.63	20.29	0.78767
520	124.27	1.2147	88.62	158.58	0.59172	1200	291.30	24.01	209.05	18.51	0.79628
537	128.34	1.3593	91.53	146.34	0.59945	1240	301.52	27.13	216.53	16.93	0.80466
540	129.06	1.3860	92.04	144.32	0.60078	1280	311.79	30.55	224.05	15.52	0.81280
560	133.86	1.5742	95.47	131.78	0.60950	1320	322.11	34.31	231.63	14.25	0.82075
580	138.66	1.7800	98.90	120.70	0.61793	1360	332.48	38.41	239.25	13.12	0.82848
600	143.47	2.005	102.34	110.88	0.62607	1400	342.90	42.88	246.93	12.10	0.83604
620	148.28	2.249	105.78	102.12	0.63395	1440	353.37	47.75	254.66	11.17	0.84341
640	153.09	2.514	109.21	94.30	0.64159	1480	363.89	53.04	262.44	10.34	0.85062
660	157.92	2.801	112.67	87.27	0.64902	1520	374.47	58.78	270.26	9.578	0.85767
680	162.73	3.111	116.12	80.96	0.65621	1560	385.08	65.00	278.13	8.890	0.86456
700	167.56	3.446	119.58	75.25	0.66321	1600	395.74	71.73	286.06	8.263	0.87130
720	172.39	3.806	123.04	70.07	0.67002	1650	409.13	80.89	296.03	7.556	0.87954
740	177.23	4.193	126.51	65.38	0.67665	1700	422.59	90.95	306.06	6.924	0.88758
760	182.08	4.607	129.99	61.10	0.68312	1750	436.12	101.98	316.16	6.357	0.89542
780	186.94	5.051	133.47	57.20	0.68942	1800	449.71	114.0	326.32	5.847	0.90308
800	191.81	5.526	136.97	53.63	0.69558	1850	463.37	127.2	336.55	5.388	0.91056
820	196.69	6.033	140.47	50.35	0.70160	1900	477.09	141.5	346.85	4.974	0.91788
840	201.56	6.573	143.98	47.34	0.70747	1950	490.88	157.1	357.20	4.598	0.92504
860	206.46	7.149	147.50	44.57	0.71323	2000	504.71	174.0	367.61	4.258	0.93205
880	211.35	7.761	151.02	42.01	0.71886	2050	518.61	192.3	378.08	3.949	0.93891
900	216.26	8.411	154.57	39.64	0.72438	2100	532.55	212.1	388.60	3.667	0.94564
920	221.18	9.102	158.12	37.44	0.72979	2150	546.54	233.5	399.17	3.410	0.95222

TABLE A. 7 (continued) Ideal Gas Properties of Dry Air

$T\left({ }^{\circ} \mathrm{R}\right), h$ and $u(\mathrm{Btu} / \mathrm{lb}), s^{\circ}\left(\mathrm{Btu} / \mathrm{lb} \cdot{ }^{\circ} \mathrm{R}\right)$											
\underline{T}	h	p_{r}	\boldsymbol{u}	ν_{r}	5	T	\boldsymbol{h}	p_{r}	μ	v_{r}	8
2200	560.59	256.6	409.78	3.176	0.95868	3700	998.11	2330	744.48	. 5882	1.10991
2250	574.69	281.4	420.46	2.961	0.96501	3750	1013.1	2471	756.04	. 5621	1.11393
2300	588.82	308.1	431.16	2.765	0.97123	3800	1028.1	2618	767.60	. 5376	1.11791
2350	603.00	336.8	441.91	2.585	0.97732	3850	1043.1	2773	779.19	. 5143	1.12183
2400	617.22	367.6	452.70	2.419	0.98331	3900	1058.1	2934	790.80	. 4923	1.12571
2450	631.48	400.5	463.54	2.266	0.98919	3950	1073.2	3103	802.43	. 4715	1.12955
2500	645.78	435.7	474.40	2.125	0.99497	4000	1088.3	3280	814.06	. 4518	1.13334
2550	660.12	473.3	485.31	1.996	1.00064	4050	1103.4	3464	825.72	. 4331	1.13709
2600	674.49	513.5	496.26	1.876	1.00623	4100	1118.5	3656	837.40	. 4154	1.14079
2650	688.90	556.3	507.25	1.765	1.01172	4150	1133.6	3858	849.09	. 3985	1.14446
2700	703.35	601.9	518.26	1.662	1.01712	4200	1148.7	4067	860.81	. 3826	1.14809
2750	717.83	650.4	529.31	1.566	1.02244	4300	1179.0	4513	884.28	. 3529	1.15522
2800	732.33	702.0	540.40	1.478	1.02767	4400	1209.4	4997	907.81	. 3262	1.16221
2850	746.88	756.7	551.52	1.395	1.03282	4500	1239.9	5521	931.39	. 3019	1.16905
2900	761.45	814.8	562.66	1.318	1.03788	4600	1270.4	6089	955.04	. 2799	1.17575
2950	776.05	876.4	573.84	1.247	1.04288	4700	1300.9	6701	978.73	. 2598	1.18232
3000	790.68	941.4	585.04	1.180	1.04779	4800	1331.5	7362	1002.5	. 2415	1.18876
3050	805.34	1011	596.28	1.118	1.05264	4900	1362.2	8073	1026.3	. 2248	1.19508
3100	820.03	1083	607.53	1.060	1.05741	5000	1392.9	8837	1050.1	. 2096	1.20129
3150	834.75	1161	618.82	1.006	1.06212	5100	1423.6	9658	1074.0	. 1956	1.20738
3200	849.48	1242	630.12	. 9546	1.06676	5200	1454.4	10539	1098.0	. 1828	1.21336
3250	864.24	1328	641.46	. 9069	1.07134	5300	1485.3	11481	1122.0	. 1710	1.21923
3300	879.02	1418	652.81	. 8621	1.07585						
3350	893.83	1513	664.20	. 8202	1.08031						
3400	908.66	1613	675.60	. 7807	1.08470						
3450	923.52	1719	687.04	. 7436	1.08904						
3500	938.40	1829	698.48	. 7087	1.09332						
3550	953.30	1946	709.95	. 6759	1.09755						
3600	968.21	2068	721.44	. 6449	1.10172						
3650	983.15	2196	732.95	. 6157	1.10584						

Source: Adapted from M.J. Moran and H.N. Shapiro, Fundamentals of Engineering Thermodynamics, 3rd. ed., Wiley \& Sons, New York, 1995, as based on J.H. Keenan and J. Kaye, Gas Tables, John Wiley and Sons, New York, 1945. With permission.

Appendix B Properties of Liquids

TABLE B. 1 Properties of Liquid Water

Symbols and Units:

$\rho=$ density, $\mathrm{lbm} / \mathrm{ft}^{3}$. For $\mathrm{g} / \mathrm{cm}^{3}$ multiply by 0.016018 . For $\mathrm{kg} / \mathrm{m}^{3}$ multiply by 16.018 .
$c_{p}=$ specific heat, Btu/lbm $\cdot \mathrm{deg} \mathrm{R}=\mathrm{cal} / \mathrm{g} \cdot \mathrm{K}$. For $\mathrm{J} / \mathrm{kg} \cdot \mathrm{K}$ multiply by 4186.8
$\mu=$ viscosity. For $\mathrm{lbf} \cdot \mathrm{sec} / \mathrm{ft}^{2}=$ slugs $/ \mathrm{sec} \cdot \mathrm{ft}$, multiply by 10^{-7}. For $\mathrm{lbm} \cdot \mathrm{sec} \cdot \mathrm{ft}$ multiply by 10^{-7} and by 32.174. For $\mathrm{g} / \mathrm{sec} \cdot \mathrm{cm}$ (poises) multiply by 10^{-7} and by 478.80 . For $\mathrm{N} \cdot \mathrm{sec} / \mathrm{m}^{2}$ multiply by 10^{-7} and by 478.880 .
$k=$ thermal conductivity, Btu/hr•ft•deg R. For W/m•K multiply by 1.7307 .

	At 1 atm or 14.7 psia				At 1,000 psia				At 10,000 psia			
	ρ	c_{p}	μ	k	ρ	c_{p}	μ	k	ρ	c_{p}	μ	k^{a}
32	62.42	1.007	366	0.3286	62.62	0.999	365	0.3319	64.5	0.937	357	0.3508
40	62.42	1.004	323	0.334	62.62	0.997	323	0.337	64.5	0.945	315	0.356
50	62.42	1.002	272	0.3392	62.62	0.995	272	0.3425	64.5	0.951	267	0.3610
60	62.38	1.000	235	0.345	62.58	0.994	235	0.348	64.1	0.956	233	0.366
70	62.31	0.999	204	0.350	62.50	0.994	204	0.353	64.1	0.960	203	0.371
80	62.23	0.998	177	0.354	62.42	0.994	177	0.358	64.1	0.962	176	0.376
90	62.11	0.998	160	0.359	62.31	0.994	160	0.362	63.7	0.964	159	0.380
100	62.00	0.998	142	0.3633	62.19	0.994	142	0.3666	63.7	0.965	142	0.3841
110	61.88	0.999	126	0.367	62.03	0.994	126	0.371	63.7	0.966	126	0.388
120	61.73	0.999	114	0.371	61.88	0.995	114	0.374	63.3	0.967	114	0.391
130	61.54	0.999	105	0.374	61.73	0.995	105	0.378	63.3	0.968	105	0.395
140	61.39	0.999	96	0.378	61.58	0.996	96	0.381	63.3	0.969	98	0.398
150	61.20	1.000	89	0.3806	61.39	0.996	89	0.3837	63.0	0.970	91	0.4003
160	61.01	1.001	83	0.383	61.20	0.997	83	0.386	62.9	0.971	85	0.403
170	60.79	1.002	77	0.386	60.98	0.998	77	0.389	62.5	0.972	79	0.405
180	60.57	1.003	72	0.388	60.75	0.999	72	0.391	62.5	0.973	74	0.407
190	60.35	1.004	68	0.390	60.53	1.001	68	0.393	62.1	0.974	70	0.409
200	60.10	1.005	62.5	0.3916	60.31	1.002	62.9	0.3944	62.1	0.975	65.4	0.4106
250	boiling point $212^{\circ} \mathrm{F}$				59.03	1.001	47.8	0.3994	60.6	0.981	50.6	0.4158
300					57.54	1.024	38.4	0.3993	59.5	0.988	41.3	0.4164
350					55.83	1.044	32.1	0.3944	58.1	0.999	35.1	0.4132
400					53.91	1.072	27.6	0.3849	56.5	1.011	30.6	0.4064
500					49.11	1.181	21.6	0.3508	52.9	1.051	24.8	0.3836
600					boiling point $544.58^{\circ} \mathrm{F}$				48.3	1.118	21.0	0.3493

${ }^{\text {a }}$ At 7,500 psia.
Source: "1967 ASME Steam Tables", American Society of Mechanical Engineers, Tables 9, 10, and 11 and Figures 6, 7, 8, and 9.
Note: The ASME compilation is a 330 -page book of tables and charts, including a $2^{1 / 2} \times 3^{1 / 2}-\mathrm{ft}$ Mollier chart. All values have been computed in accordance with the 1967 specifications of the International Formulation Committee (IFC) and are in conformity with the 1963 International Skeleton Tables. This standardization of tables began in 1921 and was extended through the (1963) and Glasgow (1966). Based on these worldwide standard data, the 1967 ASME volume represents detailed computer output in both tabular and graphic form. Included are density and volume, enthalpy, entropy, specific heat, viscosity, thermal conductivity, Prandtl number, isentropic exponent, choking velocity, p-v product, etc., over the entire range (to 1500 psia $1500^{\circ} \mathrm{F}$). English units are used, but all conversion factors are given.

Part a. SI Units
(At 1.0 Atm Pressure ($0.101325 \mathrm{MN} / \mathrm{m}^{2}$), 300 K , except as noted.)

Common name	Density, $\mathrm{kg} / \mathrm{m}^{3}$	Specific heat, $k J / k g \cdot K$	Viscosity, $N \cdot \mathrm{~s} / \mathrm{m}^{2}$	Thermal conductivity, $W / m \cdot K$	Freezing point, K	Latent heat of fusion, kJ/kg	Boiling point, K	Latent heat of evaporation, kJ/kg	Coefficient of cubical expansion per K
Acetic acid	1049	2.18	. 001155	0.171	290	181	391	402	0.0011
Acetone	784.6	2.15	. 000316	0.161	179.0	98.3	329	518	0.0015
Alcohol, ethyl	785.1	2.44	. 001095	0.171	158.6	108	351.46	846	0.0011
Alcohol, methyl	786.5	2.54	. 00056	0.202	175.5	98.8	337.8	1100	0.0014
Alcohol, propyl	800.0	2.37	. 00192	0.161	146	86.5	371	779	
Ammonia (aqua)	823.5	4.38		0.353					
Benzene	873.8	1.73	. 000601	0.144	278.68	126	353.3	390	0.0013
Bromine		. 473	. 00095		245.84	66.7	331.6	193	0.0012
Carbon disulfide	1261	. 992	. 00036	0.161	161.2	57.6	319.40	351	0.0013
Carbon tetrachloride	1584	. 866	. 00091	0.104	250.35	174	349.6	194	0.0013
Castor oil	956.1	1.97	. 650	0.180	263.2				
Chloroform	1465	1.05	. 00053	0.118	209.6	77.0	334.4	247	0.0013
Decane	726.3	2.21	. 000859	0.147	243.5	201	447.2	263	
Dodecane	754.6	2.21	. 001374	0.140	247.18	216	489.4	256	
Ether	713.5	2.21	. 000223	0.130	157	96.2	307.7	372	0.0016
Ethylene glycol	1097	2.36	. 0162	0.258	260.2	181	470	800	
Fluorine refrigerant R-11	1476	. 870^{a}	. 00042	0.093^{a}	162		297.0	$180^{\text {b }}$	
Fluorine refrigerant R-12	1311	$.971{ }^{a}$		0.071^{a}	115	34.4	243.4	$165^{\text {b }}$	
Fluorine refrigerant R-22	1194	1.26^{a}		0.086^{a}	113	183	232.4	$232{ }^{\text {b }}$	
Glycerine	1259	2.62	. 950	0.287	264.8	200	563.4	974	0.00054
Heptane	679.5	2.24	. 000376	0.128	182.54	140	371.5	318	
Hexane	654.8	2.26	. 000297	0.124	178.0	152	341.84	365	
Iodine		2.15			386.6	62.2	457.5	164	
Kerosene	820.1	2.09	. 00164	0.145				251	
Linseed oil	929.1	1.84	. 0331		253		560		
Mercury		. 139	. 00153		234.3	11.6	630	295	0.00018
Octane	698.6	2.15	. 00051	0.131	216.4	181	398	298	0.00072
Phenol	1072	1.43	. 0080	0.190	316.2	121	455		0.00090
Propane	493.5	$2.41{ }^{\text {a }}$. 00011		85.5	79.9	231.08	$428{ }^{\text {b }}$	
Propylene	514.4	2.85	. 00009		87.9	71.4	225.45	342	
Propylene glycol	965.3	2.50	. 042		213		460	914	
Sea water	1025	$\begin{array}{r} 3.76- \\ 4.10 \end{array}$			270.6				
Toluene	862.3	1.72	. 000550	0.133	178	71.8	383.6	363	
Turpentine	868.2	1.78	. 001375	0.121	214		433	293	0.00099
Water	997.1	4.18	. 00089	0.609	273	333	373	2260	0.00020

At 297 K , liquid.
${ }^{\text {b }}$ At 101325 meganewtons, saturation temperature.

Part b. English Units

(At 1.0 Atm Pressure $77^{\circ} \mathrm{F}\left(25^{\circ} \mathrm{C}\right)$, except as noted.)
For viscosity in $\mathrm{N} \cdot \mathrm{s} / \mathrm{m}^{2}(=\mathrm{kg} \mathrm{m} \cdot \mathrm{s})$, multiply values in centipoises by 0.001 . For surface tension in N / m, multiply values in dyne/cm by 0.001 .

Common name	Density,$\frac{l b}{f t^{3}}$	Specific gravity	Viscosity		Sound velocity, $\frac{\text { meters }}{\mathrm{sec}}$	Dielectric constant	Refractive index
			$\begin{gathered} 1 b_{m} / f t \mathrm{sec} \\ \times 10^{4} \end{gathered}$	$c p$			
Acetic acid	65.493	1.049	7.76	1.155	$1584^{\text {s0 }}$	6.15	1.37
Acetone	48.98	. 787	2.12	0.316	1174	20.7	1.36
Alcohol, ethyl	49.01	. 787	7.36	1.095	1144	24.3	1.36
Alcohol, methyl	49.10	. 789	3.76	0.56	1103	32.6	1.33
Alcohol, propyl	49.94	. 802	12.9	1.92	1205	20.1	1.38
Ammonia (aqua)	51.411	. 826	-	-	-	16.9	-
Benzene	54.55	. 876	4.04	0.601	1298	2.2	1.50
Bromine	-	-	6.38	0.95	-	3.20	-
Carbon disulfide	78.72	1.265	2.42	0.36	1149	2.64	1.63
Carbon tetrachloride	98.91	1.59	6.11	0.91	924	2.23	1.46
Castor oil	59.69	0.960	-	650	1474	4.7	-
Chloroform	91.44	1.47	3.56	0.53	995	4.8	1.44
Decane	45.34	. 728	5.77	0.859	-	2.0	1.41
Dodecane	47.11	-	9.23	1.374	-	-	1.41
Ether	44.54	0.715	1.50	0.223	985	4.3	1.35
Ethylene glycol	68.47	1.100	109	16.2	1644	37.7	1.43
Fluorine refrigerant $\mathrm{R}-11$	92.14	1.480	2.82	0.42	-	2.0	1.37
Fluorine refrigerant R-12	81.84	1.315	-	-	-	2.0	1.29
Fluorine refrigerant $\mathrm{R}-22$	74.53	1.197	-	-	--	2.0	1.26
Glycerine	78.62	1.263	6380	950	1909	40	1.47
Heptane	42.42	. 681	2.53	0.376	1138	1.92	1.38
Hexane	40.88	. 657	2.00	0.297	1203	-	1.37
Iodine	-	-	-	-	-	11	-
Kerosene	51.2	0.823	11.0	1.64	1320	-	-
Linseed oil	58.0	0.93	222	33.1	-	3.3	-
Mercury	-	13.633	10.3	1.53	1450	-	-
Octane	43.61	. 701	3.43	0.51	1171	-	1.40
Phenol	66.94	1.071	54	8.0	$1274{ }^{100}$	9.8	-
Propane	30.81	. 495	0.74	0.11	-	1.27	1.34
Propylene	32.11	. 516	0.60	0.09	-	-	1.36
Propylene glycol	60.26	. 968	-	42	-	-	1.43
Sea water	64.0	1.03	-	-	1535	-	-
Toluene	53.83	0.865	3.70	0.550	$1275{ }^{30}$	2.4	1.49
Turpentine	54.2	0.87	9.24	1.375	1240	-	1.47
Water	62.247	1.00	6.0	0.89	1498	$78.54{ }^{\text {a }}$	1.33

${ }^{\circ}$ The dielectric constant of water near the freezing point is 87.8; it decreases with increase in temperature to about 55.6 near the boiling point.

Appendix C Properties of Solids

TABLE C. 1 Properties of Common Solids

Material	Specific gravity	Specific heat		Thermal conductivity	
		$\frac{B t u}{l b m \cdot \operatorname{deg} R}$	$\frac{k J}{k g \cdot K}$	$\frac{B t u}{h r \cdot f \cdot d e g F}$	$\frac{W}{m \cdot K}$
Asbestos cement board	1.4	0.2	. 837	0.35	0.607
Asbestos millboard	1.0	0.2	. 837	0.08	0.14
Asphalt	1.1	0.4	1.67		
Beeswax	0.95	0.82	3.43		
Brick, common	1.75	0.22	. 920	0.42	0.71
Brick, hard	2.0	0.24	1.00	0.75	1.3
Chalk	2.0	0.215	. 900	0.48	0.84
Charcoal, wood	0.4	0.24	1.00	0.05	0.088
Coal, anthracite	1.5	0.3	1.26		
Coal, bituminous	1.2	0.33	1.38		
Concrete, light	1.4	0.23	962	0.25	0.42
Concrete, stone	2.2	0.18	753	1.0	1.7
Corkboard	0.2	0.45	1.88	0.025	0.04
Earth, dry	1.4	0.3	1.26	0.85	1.5
Fiberboard, light	0.24	0.6	2.51	0.035	0.058
Fiber hardboard	1.1	0.5	2.09	0.12	0.2
Firebrick	2.1	0.25	1.05	0.8	1.4
Glass, window	2.5	0.2	. 837	0.55	0.96
Gypsum board	0.8	0.26	1.09	0.1	0.17
Hairfelt	0.1	0.5	2.09	0.03	0.050
Ice (32°)	0.9	0.5	2.09	1.25	2.2
Leather, dry	0.9	0.36	1.51	0.09	0.2
Limestone	2.5	0.217	. 908	1.1	1.9
Magnesia (85\%)	0.25	0.2	. 837	0.04	0.071
Marble	2.6	0.21	. 879	1.5	2.6
Mica	2.7	0.12	. 502	0.4	0.71
Mineral wool blanket	0.1	0.2	. 837	0.025	0.04
Paper	0.9	0.33	1.38	0.07	0.1
Paraffin wax	0.9	0.69	2.89	0.15	0.2
Plaster, light	0.7	0.24	1.00	0.15	0.2
Plaster, sand	1.8	0.22	. 920	0.42	0.71
Plastics, foamed	0.2	0.3	1.26	0.02	0.03
Plastics, solid	1.2	0.4	1.67	0.11	0.19
Porcelain	2.5	0.22	. 920	0.9	1.5
Sandstone	2.3	0.22	. 920	1.0	1.7
Sawdust	0.15	0.21	. 879	0.05	0.08
Silica aerogel	0.11	0.2	. 837	0.015	0.02
Vermiculite	0.13	0.2	. 837	0.035	0.058
Wood, balsa	0.16	0.7	2.93	0.03	0.050
Wood, oak	0.7	0.5	2.09	0.10	0.17
Wood, white pine	0.5	0.6	2.51	0.07	0.12
Wool, felt	0.3	0.33	1.38	0.04	0.071
Wool, loose	0.1	0.3	1.26	0.02	0.3

Source: Compiled from several sources.

Substance	Grams per cu cm	Pounds per cu ft	Substance	Grams per cu cm	Pounds per cu ft	Substance	Grams per cu cm	Pounds per cu ft
Agate	2.5-2.7	156-168	Glass			Tallow		
Alabaster			Common	2.4-2.8	150-175	Beef	0.94	59
Carbonate	2.69-2.78	168-173	Flint	2.9-5.9	180-370	Mutton	0.94	59
Sulfate	2.26-2.32	141-145	Glue	1.27	79	Tar	1.02	66
Albite	2.62-2.65	163-165	Granite	2.64-2.76	165-172	Topaz	3.5-3.6	219-223
Amber	1.06-1.11	66-69	Graphite ${ }^{\text {a }}$	2.30-2.72	144-170	Tourmaline	3.0-3.2	190-200
Amphiboles	2.9-3.2	180-200	Gum arabic	1.3-1.4	81-87	Wax, sealing	1.8	112
Anorthite	2.74-2.76	171-172	Gypsum	2.31-2.33	144-145	Wood (seasoned)		
Asbestos	2.0-2.8	125-175	Hematite	4.9-5.3	306-330	Alder	0.42-0.68	26-42
Asbestos slate	1.8	112	Hornblende	3.0	187	Apple	0.66-0.84	41-52
Asphalt	1.1-1.5	69-94	Ice	0.917	57.2	Ash	0.65-0.85	40-53
Basalt	2.4-3.1	150-190	Ivory	1.83-1.92	114-120	Balsa	0.11-0.14	7-9
Beeswax	0.96-0.97	60-61	Leather, dry	0.86	54	Bamboo	0.31-0.40	19-25
Beryl	2.69-2.7	168-169	Lime, slaked	1.3-1.4	81-87	Basswood	0.32-0.59	20-37
Biotite	2.7-3.1	170-190	Limestone	2.68-2.76	167-171	Beech	0.70-0.90	32-56
Bone	1.7-2.0	106-125	Linoleum	1.18	74	Birch	0.51-0.77	32-48
Brick	1.4-2.2	87-137	Magnetite	4.9-5.2	306-324	Blue gum	1.00	62
Butter	0.86-0.87	53-54	Malachite	3.7-4.1	231-256	Box	0.95-1.16	59-72
Calamine	4.1-4.5	255-280	Marble	2.6-2.84	160-177	Butternut	0.38	24
Calcspar	2.6-2.8	162-175	Meerschaum	0.99-1.28	62-80	Cedar	0.49-0.57	30-35
Camphor	0.99	62	Mica	2.6-3.2	165-200	Cherry	0.70-0.90	43-56
Caoutchouc	0.92-0.99	57-62	Muscovite	2.76-3.00	172-187	Dogwood	0.76	47
Cardboard	0.69	43	Ochre	3.5	218	Ebony	1.11-1.33	69-83
Celluloid	1.4	87	Opal	2.2	137	Elm	0.54-0.60	34-37
Cement, set	2.7-3.0	170-190	Paper	0.7-1.15	44-72	Hickory	0.60-0.93	37-58
Chalk	1.9-2.8	118-175	Paraffin	0.87-0.91	54-57	Holly	0.76	47
Charcoal			Peat blocks	0.84	52	Juniper	0.56	35
Oak	0.57	35	Pitch	1.07	67	Larch	0.50-0.56	31-35
Pine	0.28-0.44	18-28	Porcelain	2.3-2.5	143-156	Lignum vitae	1.17-1.33	73-83
Cinnabar	8.12	507	Porphyry	2.6-2.9	162-181	Locust	0.67-0.71	42-44
Clay	1.8-2.6	112-162	Pressed wood			Logwood	0.91	57
Coal			pulp board	0.19	12	Mahogany		
Anthracite	1.4-1.8	87-112	Pyrite	4.95-5.1	309-318	Honduras	0.66	41
Bituminous	1.2-1.5	75-94	Quartz	2.65	165	Spanish	0.85	53
Cocoa butter	0.89-0.91	56-57	Resin	1.07	67	Maple	0.62-0.75	39-47
Coke	1.0-1.7	62-105	Rock salt	2.18	136	Oak	0.60-0.90	37-56
Copal	1.04-1.14	65-71	Rubber, hard	1.19	74	Pear	0.61-0.73	38-45
Cork	0.22-0.26	14-16	Rubber, soft			Pine		
Cork linoleum	0.54	34	Commercial	1.1	69	Pitch	0.83-0.85	52-53
Corundum	3.9-4.0	245-250	Pure gum	0.91-0.93	57-58	White	0.35-0.50	22-31
Diamond	3.01-3.52	188-220	Sandstone	2.14-2.36	134-147	Yellow	0.37-0.60	23-37
Dolomite	2.84	177	Serpentine	2.50-2.65	156-165	Plum	0.66-0.78	41-49
Ebonite	1.15	72	Silica			Poplar	0.35-0.5	22-31
Emery	4.0	250	Fused trans-			Satinwood	0.95	59
Epidote	3.25-3.50	203-218	parent	2.21	138	Spruce	0.48-0.70	30-44
Feldspar	2.55-2.75	159-172	Translucent	2.07	129	Sycamore	0.40-0.60	24-37
Flint	2.63	164	Slag	2.0-3.9	125-240	Teak		
Fluorite	3.18	198	Slate	2.6-3.3	162-205	Indian	0.66-0.88	41-55
Galena	7.3-7.6	460-470	Soapstone	2.6-2.8	162-175	African	0.98	61
Gamboge	1.2	75	Spermaceti	0.95	59	Walnut	0.64-0.70	40-43
Garnet	3.15-4.3	197-268	Starch	1.53	95	Water gum	1.00	62
Gas carbon	1.88	117	Sugar	1.59	99	Willow	0.40-0.60	24-37
Gelatin	1.27	79	Talc	2.7-2.8	168-174			

${ }^{\text {a }}$ Some values reported as low as 1.6
Source: Based largely on "Smithsonian Physical Tables", 9th rev. ed., W.E. Forsythe, Ed., The Smithsonian Institute, 1956, p. 292.
Note: In the case of substances with voids, such as paper or leather, the bulk density is indicated rather than the density of the solid portion. For density in $\mathrm{kg} / \mathrm{m}^{3}$, multiply values in $\mathrm{g} / \mathrm{cm}^{3}$ by 1,000 .

Metal	AT ATMOSPHERIC PRESSURE								LIQUID METAL			
	Melting point, ${ }^{\circ} \mathrm{C}$	Bolling point, ${ }^{\circ} \mathrm{C}$	Latent heat of fusion, callg**	At $100^{\circ} \mathrm{K}$		A $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$			Specific heat (liquid) at $2000^{\circ} \mathrm{K}$. cal/g ${ }^{\circ} C^{* *}$	Vapor pressure		
				Thermal			Coeff. of			$10^{-3} \mathrm{~atm}$	$10^{-6} \mathrm{~atm}$	$10^{-9} \mathrm{~atm}$
				conduc- tivity, watis/ $\mathrm{cm}^{\circ} \mathrm{C}$	Specific heat, $\mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}^{* *}$	Specific heat, cal/g ${ }^{\circ} \mathrm{C}^{* *}$	$\begin{aligned} & \text { linear } \\ & \text { expansion, } \\ & \left(\times 10^{\circ}\right) \\ & \left({ }^{\circ} \mathrm{C}\right)^{-1} \end{aligned}$	conductivity. watts $/ \mathrm{cm}^{\circ} \mathrm{C}$		Boiling point temperatures, ${ }^{\circ} \mathrm{K}$		
Aluminum	660.0	2441.0	95	3.00*	0.115	0.215	25	2.37	0.26	1.782	1,333	1,063
Antimony	630.0	1440.0	38.5	--	0.040	0.050	9	0.185	0.062	1,007	741	612
Beryllium	1285.0	2475.0	324.	-	0.049	0.436	12	2.18	0.78	1,793	1,347	1,085
Bismuth	271.4	1660.0	12.4	-	0.026	0.030	13	0.084	0.036	1,155	851	677.
Cadmium	321.0	767.0	13.2	1.03	0.047	0.055	30	0.93	0.063	655	486	388
Chromium	1860.0	2670.0	79	1.58	0.046	0.110	6	0.91	0.224	1,992	1,530	1,247
Cobalt	1495.0	2925.0	66	-	0.057	0.10	12	0.69	0.164	2,167	1,652	1,345
Copper	1084.0	2575.0	49	4.83**	0.061	0.092	16.6	3.98	0.118	1,862	1,391	1,120
Gold	1063.0	2800.0	15	3.45*	0.026	0.031	14.2	3.15	0.0355	2,023	1,510	1,211
Iridium	2450.0	4390.0	33	-	0.022	0.031	6	1.47	0.0434	3,253	2,515	2,062
Iron	1536.0	2870.0	65	1.32*	0.052	0.108	12	0.803	0.197	2,093	1,594	1,297
Lead	327.5	1750.0	5.5	0.396	0.028	0.031	29	0.346	0.033	1,230	889	698
Magnesium	650.0	1090.0	88.0	1.69	0.016	0.243	25	1.59	0.32	857	638	509
Manganese	1244.0	2060.0	64	-	0.064	0.114	22	-	0.20	1,495	1,131	913
Mercury	-38.86	356.55	2.7	-	0.029	0033	$-$	0.0839	-	393	287	227
Molybdenum	2620.0	4651.0	69	1.79	0.033	0.060	5	1.4	${ }^{0.089}$	3,344	2,558	2,079
Nickel	1453.0	2800.0	71	1.58	0.055	0.106	13	0.899	0.175	2,156	1,646	1,343
Niobium (Columbium)	2470.0	4740.0	68	0.552	${ }_{0}^{0} 0.045$	0.064	7	0.52	0.083	3,523	2,721	2,232
Osmium	3025.0	4225.0	34	-	-	0.031	5	0.61	0.039	-	-	-
Platinum	1770.0	3825.0	24	0.79*	0.024	0.032	9	0.73	0.043	2,817	2,155	1,757
Plutonium	640.0	3230.0	3	-	0.019	0.032	54	0.08	0.04 \|	2,200	1,596	1,252
Potassium	63.3	760.0	14.5	-	0.150	0.180	83	0.99	-	606	430	335
Rhodium	1965.0	3700.0	50	-	-	0.058	8	1.50	0.092	-	-	-
Selenium	217.0	700.0	16	-	-	0.077	37	0.005	-	-	-	-
Silicon	1411.0	3280.0	430	-	0.062	0.17	3	0.835	0.217	2,340	1,749	1,427
Silver	961.0	2212.0	26.5	4.50*	0.045	0.057	19	4.27	0.068	1,582	1,179	952
Sodium	97.83	884.0	27	-	0.234	0.293	70	1.34	-	701	504	394
Tantalum	2980.0	5365.0	41	0.592	0.026	0.034	6.5	0.54	0.040	3,959	3,052	2,495
Thorium	1750.0	4800.0	17	-	0.024	0.03	12	0.41	0.047	3,251	2,407	1,919
Tin	232.0	2600.0	14.1	0.85	0.039	0.054	20	0.64	0.058	1,857	1,366	1,080
Titanium	1670.0	3290.0	100	0.312	0.072	0.125	8.5	0.2	0.188	2,405	1,827	1,484
Tungsten	3400.0	5550.0	46	2.35*	0.021	0.032	4.5	1.78	0.040	4,139	3,228	2,656
Uranium	1132.0	4140.0	12	-	0.022	0.028	13.4	0.25	0.048	2,861	2,128	1,699
Vanadium	1900.0	3400.0	98	-	0.061	0.116	8	0.60	0.207	2,525	1,948	1,591
Zinc	419.5	910.0	27	1.32	0.063	0.093	35	1.15	-	752	559	449

* Temperatures of maximum thermal conductivity (conductivity values in watts $/ \mathrm{cm}{ }^{\circ} \mathrm{C}$): Aluminum $13^{\circ} \mathrm{K}$, cond. $=71.5$; copper $10^{\circ} \mathrm{K}$, cond. $=196$; gold $10^{\circ} \mathrm{K}$, cond. $=28.2$; iron $20^{\circ} \mathrm{K}$, cond. $=9.97$; platinum $8^{\circ} \mathrm{K}$, cond. $=12.9$; silver $7^{\circ} \mathrm{K}$, cond. $=193$; tungsten $8^{\circ} \mathrm{K}$, cond. $=85.3$.
** To convert to SI units note that $1 \mathrm{cal}=4.186 \mathrm{~J}$.

TABLE C. 4 Miscellaneous Properties of Metals and Alloys
Part a. Pure Metals
At Room Temperature

Common name	PROPERTIES (TYPICAL ONLY)						
	Thermal conductivity, $B t u / h r f t{ }^{\circ} F$	Specific gravity	Coeff. of linear expansion, μ in./ in. ${ }^{\circ} F$	Electrical resistivity, microhm- cm	Poisson's ratio	Modulus of elasticity, millions of psi	Approximate melting point, ${ }^{\circ} \mathrm{F}$
Aluminum	137	2.70	14	2.655	0.33	10.0	1220
Antimony	10.7	6.69	5	41.8		11.3	1170
Beryllium	126	1.85	6.7	4.0	0.024-. 030	42	2345
Bismuth	4.9	9.75	7.2	115		4.6	521
Cadmium	54	8.65	17	7.4		8	610
Chromium	52	7.2	3.3	13		36	3380
Cobalt	40	8.9	6.7	9		30	2723
Copper	230	8.96	9.2	1.673	0.36	17	1983
Gold	182	19.32	7.9	2.35	0.42	10.8	1945
Iridium	85.0	22.42	3.3	5.3		75	4440
Iron	46.4	7.87	6.7	9.7		28.5	2797
Lead	20.0	11.35	16	20.6	0.40-. 45	2.0	621
Magnesium	91.9	1.74	14	4.45	0.35	6.4	1200
Manganese		7.21-7.44	12	185		23	
Mercury	4.85	13.546		98.4			
Molybdenum	81	10.22	3.0	5.2	0.32	40	4750
Nickel	52.0	8.90	7.4	6.85	0.31	31	2647
Niobium (Columbium)	30	8.57	3.9	13		15	4473
Osmium	35	22.57	2.8	$\stackrel{9}{10.5}$		80	5477
Platinum	42	21.45	5	10.5	0.39	21.3	3220
Plutonium	4.6	19.84	30	141.4	0.15-. 21	14	1180
Potassium	57.8	0.86	46	7.01			146
Rhodium	86.7	12.41	4.4	4.6		42	3569
Selenium	0.3	4.8	21	12.0		8.4	423
Silicon	48.3	2.33	2.8	1×10^{5}		16	2572
Silver	247	10.50	11	1.59	0.37	10.5	1760
Sodium	77.5	0.97	39	4.2			$\begin{array}{r} 208 \\ 5400 \end{array}$
Tantalum	31	16.6	3.6	12.4	0.35	27	5400
Thorium	24	11.7	6.7	18	0.27	8.5	3180
Tin	37	7.31	11	11.0	0.33	6	450
Titanium	12	4.54	4.7	43	0.3	16 50	
Tungsten	103	19.3	2.5	5.65	0.28	50 24	$\begin{aligned} & 6150 \\ & 2070 \end{aligned}$
Uranium	14	18.8	7.4	30	0.21	24	$\begin{aligned} & 2070 \\ & 3450 \end{aligned}$
Vanadium	35	6.1	4.4 19	$\begin{aligned} & 25 \\ & 5.92 \end{aligned}$		19 12	3450 787
Zinc	66.5	7	19	5.92	0.25	12	787

Appendix D Gases and Vapors

TABLE D. 1 SI Units - Definitions, Abbreviations and Prefixes

BASIC UNITS-MKS

PREFIX NAMES OF MULTIPLES AND SUBMULTIPLES OF UNITS

Decimal equivalent	Prefix	Pronunciation	Symbol	Exponential expression
1,000,000,000,000	tera	ter'ȧ	T	10^{+12}
1,000,00,000,000	giga	ji'ga	G	10^{+9}
1,0000,000	mega	mèg'à	M	10^{+6}
1,000	kilo	kil'ō	k	10^{+3}
100	hecto	hěk'tō	h	10^{+2}
10	deka	deĕk'à	da	10
0.1	deci	dees'rí	d	10^{-1}
0.01	centi	sěn'tí	c	10^{-2}
0.001	milli	mil'i	m	10^{-3}
0.000001	micro	mī'krō	μ	10^{-6}
0.000000001	nano	năn'ō	n	10^{-9}
0.000000000001	pico	pé'kō	p	10^{-12}
0.000000000000001	femto	fem'tō	f	10^{-15}
0.000000000000000001	atto	ăt'tō	a	10^{-18}

TABLE E. 1 Properties of Typical Gaseous and Liquid Commercial Fuels

Gaseous fuels	Composition, percent by volume								Molwt of fuel	Theor. air/fuel ratio by wt	Higher heating value, $B t u / l b_{m}$	Density,$l b_{m} / f t^{3}$
	H_{2}	N_{2}	O_{2}	CH_{4}	CO	CO_{2}	$\mathrm{C}_{2} \mathrm{H}_{4}$	$\mathrm{C}_{6} \mathrm{H}_{6}$				
Blast furnace gas	1.0	60.0	-	-	27.5	11.5	-	-	29.6	0.667	1,170	. $0755^{\text {a }}$
Blue water gas	47.3	8.3	0.7	1.3	37.0	5.4	-	--	16.4	3.759	6,550	. $0422^{\text {a }}$
Carb. water gas	40.5	2.9	0.5	10.2	34.0	3.0	6.1	2.8	18.3	7.299	11,350	$.0466^{\text {a }}$
Coal gas	54.5	4.4	0.2	24.2	10.9	3.0	1.5	1.3	12.1	10.87	16,500	$.0311^{a}$
Coke-oven gas	46.5	8.1	0.8	32.1	6.3	2.2	3.5	0.5	13.7	17.24	17,000	. $0326^{\text {a }}$
Natural gas $\left(15.8 \% \mathrm{C}_{2} \mathrm{H}_{6}\right)$	-	0.8	-	83.4	-	-	-	-	18.3	17.24	24,100	$.0451^{a}$
Producer gas	14.0	50.9	0.6	3.0	27.0	4.5	-	-	24.7	14.29	2,470	$.0636^{a}$
Liquid commercial fuels	Vapor		Gravity, API, $60^{\circ} \mathrm{F}$	Distillation			$\begin{aligned} & \text { Flash } \\ & \text { point, } \\ & { }^{\circ} \mathrm{F} \end{aligned}$	Viscosity, centi- stokes, $100^{\circ} \mathrm{F}$	Mol wt of fuel	Theor. air/fuel ratio by wt	Higher heating value, $B t u / l b_{m}$	Density,$l b_{m} / f t^{3}$
	$\begin{gathered} c_{p}, \\ 60^{\circ} F \end{gathered}$	$\begin{gathered} c_{p} / c_{v}, \\ 60^{\circ} F \end{gathered}$		10%, ${ }^{\circ} \mathrm{F}$	90\% ${ }^{\circ}{ }^{\circ} \mathrm{F}$	End point, ${ }^{\circ} F$						
	(approximately)											
Gasoline	0.4	1.05	63	121	320	397	0	-	113	14.93	20,460	$43.8{ }^{\text {b }}$
Gasoline	0.4	1.05	63	118	330	410	0	-	$126^{\text {c }}$	14.97	20,260	$46.1{ }^{\text {b }}$
Kerosene	0.4	1.05	41.9	370	510	546	130	-	$154{ }^{\text {c }}$	14.99	19,750	$51.5{ }^{\text {b }}$
Diesel oil (1-D)	0.4	1.05	42	-	550	-	100	1.4-2.5	170	15.02	19,240	$54.6{ }^{\text {b }}$
Diesel oil (2-D)	0.4	1.05	36	-	540-576	-	125	2.0-5.8	184	15.06	19,110	$57.4{ }^{\text {b }}$
Diesel oil (4-D)	0.4	1.05	-	-	-	-	130	5.8-26.4	198	14.93	18,830	$59.9{ }^{\text {b }}$

${ }^{\text {a }}$ Based on dry air at $25^{\circ} \mathrm{C}$ and 760 mm Hg .
${ }^{\mathrm{b}}$ Based on $\mathrm{H}_{2} \mathrm{O}$ at $60^{\circ} \mathrm{F}, 1 \mathrm{~atm}\left(\rho=62.367 \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}\right)$.
${ }^{\text {c }}$ Estimated.
Source: Abridged from Engineering Experimentation, G.L. Tuve and L.C. Domholdt, McGraw-Hill Book Company, 1966; and The Internal Combustion Engine, 2nd ed., C.F. Taylor and E.S. Taylor, Textbook Co., 1961. With permission.
Note: For heating value in J / kg, multiply the value in $\mathrm{Btu} / \mathrm{lb}_{m}$ by 2324 . For density in $\mathrm{kg} / \mathrm{m}^{3}$, multiply the value in $\mathrm{lb} / \mathrm{ft}^{3}$ by 16.02 .

TABLE E. 2 Combustion Data for Hydrocarbons

Hydrocarbon	Formula	Higher heating value (vapor), $B t u / l b_{m}$	Theor. air/fuel ratio, by mass	Max flame speed, ft/sec	Adiabatic flame temp (in air), ${ }^{\circ} \mathrm{F}$	$\begin{gathered} \text { Ignition } \\ \text { temp } \\ \text { (in air), } \\ { }^{\circ} \mathrm{F} \end{gathered}$	Flash point, ${ }^{\circ} F$		ability (in air), olume
PARAFFINS OR ALKANES									
Methane	CH_{4}	23875	17.195	1.1	3484	1301	gas	5.0	15.0
Ethane	$\mathrm{C}_{2} \mathrm{H}_{6}$	22323	15.899	1.3	3540	968-1166	gas	3.0	12.5
Propane	$\mathrm{C}_{3} \mathrm{H}_{8}$	21669	15.246	1.3	3573	871	gas	2.1	10.1
n-Butane	$\mathrm{C}_{4} \mathrm{H}_{10}$	21321	14.984	1.2	3583	761	-76	1.86	8.41
iso-Butane	$\mathrm{C}_{4} \mathrm{H}_{10}$	21271	14.984	1.2	3583	864	-117	1.80	8.44
n-Pentane	$\mathrm{C}_{5} \mathrm{H}_{12}$	21095	15.323	1.3	4050	588	<-40	1.40	7.80
iso-Pentane	$\mathrm{C}_{5} \mathrm{H}_{12}$	21047	15.323	1.2	4055	788	<-60	1.32	9.16
Neopentane	$\mathrm{C}_{5} \mathrm{H}_{12}$	20978	15.323	1.1	4060	842	gas	1.38	7.22
n-Hexane	$\mathrm{C}_{6} \mathrm{H}_{14}$	20966	15.238	1.3	4030	478	-7	1.25	7.0
Neohexane	$\mathrm{C}_{6} \mathrm{H}_{14}$	20931	15.238	1.2	4055	797	-54	1.19	7.58
n-Heptane	$\mathrm{C}_{7} \mathrm{H}_{16}$	20854	15.141	1.3	3985	433	25	1.00	6.00
Triptane	$\mathrm{C}_{7} \mathrm{H}_{16}$	20824	15.141	1.2	4035	849	-	1.08	6.69
n-Octane	$\mathrm{C}_{8} \mathrm{H}_{18}$	20796	15.093	-	-	428	56	0.95	3.20
iso-Octane	$\mathrm{C}_{8} \mathrm{H}_{18}$	20770	15.093	1.1	-	837	10	0.79	5.94
OLEFINS OR ALKENES									
Ethylene	$\mathrm{C}_{2} \mathrm{H}_{4}$	21636	14.807	2.2	4250	914	gas	2.75	28.6
Propylene	$\mathrm{C}_{3} \mathrm{H}_{6}$	21048	14.807	1.4	4090	856	gas	2.00	11.1
Butylene	$\mathrm{C}_{4} \mathrm{H}_{8}$	20854	14.807	1.4	4030	829	gas	1.98	9.65
iso-Butene	$\mathrm{C}_{4} \mathrm{H}_{8}$	20737	14.807	1.2	-	869	gas	1.8	9.0
n-Pentene	$\mathrm{C}_{5} \mathrm{H}_{10}$	20720	14.807	1.4	4165	569		1.65	7.70
AROMATICS									
Benzene	$\mathrm{C}_{6} \mathrm{H}_{6}$	18184	13.297	1.3	4110				
Toluene	$\mathrm{C}_{7} \mathrm{H}_{8}$	18501	13.503	1.2	4050	997	40	1.27	6.75
p-Xylene	$\mathrm{C}_{8} \mathrm{H}_{10}$	18663	13.663	-	4010	867	63	1.00	6.00
OTHER HYDROCARBONS									
Acetylene	$\mathrm{C}_{2} \mathrm{H}_{2}$	21502	13.297	4.6	4770	763-824	gas	2.50	81.0
Naphthalene	$\mathrm{C}_{10} \mathrm{H}_{8}$	17303	12.932	-	4100	959	174	0.90	5.9

Source: Based largely on Gas Engineers' Handbook, American Gas Association, Inc., Industrial Press, 1967.
Notes: For heating value in J / kg, multiply the value in $\mathrm{Btu} / \mathrm{lb}_{m}$ by 2324 . For flame speed in m / s, multiply the value in ft / s by 0.3048 .
The higher heating value is obtained when all of the water formed by combustion is condensed to a liquid. The lower heating value is obtained when all of the water formed by combustion is a vapor. Table E. 3 shows some example values. For other fuels, subtract from the HHV the heat of vaporization of water at standard conditions (e.g., $\sim 1050 \mathrm{Btu} / \mathrm{lb@} 77^{\circ} \mathrm{F}$) multipled by the ratio of the number of pounds (kg) of water produced per pound of methane burned. Therefore, the difference between higher and lower HVs if $2.25 \times 1050=2363 \mathrm{Btu} / \mathrm{lb}$ or $5486 \frac{\mathrm{KJ}}{\mathrm{Kg}}$.

REFERENCES

American Institute of Physics Handbook, 2nd ed., D.E. Gray, Ed., McGraw-Hill Book Company, 1963.
Chemical Engineers' Handbook, 4th ed., R.H. Perry, C.H. Chilton, and S.D. Kirkpatrick, Eds., McGraw-Hill Book Company, 1963.

Handbook of Chemistry and Physics, 53rd ed., R.C. Weast, Ed., The Chemical Rubber Company, 1972; gives the heat of combustion of 500 organic compounds.
Handbook of Laboratory Safety, 2nd ed., N.V. Steere, Ed., The Chemical Rubber Company, 1971.
Physical Measurements in Gas Dynamics and Combustion, Princeton University Press, 1954.

Table E. 3 Heating Values in $\mathbf{k J} / \mathbf{k g}$ of Selected Hydrocarbons at $\mathbf{2 5}^{\circ} \mathbf{C}$

		Higher Value $^{\mathrm{a}}$			Lower Value $^{\mathrm{b}}$	
Hydrocarbon	Formula	Liguid Fuel	Gas. Fuel		Liquid Fuel	Gas. Fuel
Methane	CH_{4}	-	55,496		-	50,010
Ethane	$\mathrm{C}_{2} \mathrm{H}_{6}$	-			-	47,484
Propane	$\mathrm{C}_{3} \mathrm{H}_{8}$	49,973		50,345		45,982
n-Butane	$\mathrm{C}_{4} \mathrm{H}_{10}$	49,130		49,500		45,344
n-Octane	$\mathrm{C}_{8} \mathrm{H}_{18}$	47,893	48,256		44,425	45,352
n-Dodecane	$\mathrm{C}_{12} \mathrm{H}_{26}$	47,470	47,828		44,109	44,788
Methanol	$\mathrm{CH}_{3} \mathrm{OH}$	22,657	23,840		19,910	44,467
Ethanol	$\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{OH}$	29,676	30,596		26,811	21,093

a $\mathrm{H}_{2} \mathrm{O}$ liquid in the products.
${ }^{\text {b }} \mathrm{H}_{2} \mathrm{O}$ vapor in the products.

[^0]: ${ }^{a}$ For $\mathrm{N} \cdot \mathrm{sec} / \mathrm{m}^{2}$ divide by 1000

