

Refrigeration Manual

Part 3 - The Refrigeration Load

FOREWORD

The practice of refrigeration undoubtedly goes back as far as the history of mankind, but for thousands of years the only cooling mediums were water and ice. Today refrigeration in the home, in the supermarket, and in commercial and industrial usage is so closely woven into our everyday existence it is difficult to imagine life without it. But because of this rapid growth, countless people who must use and work with refrigeration equipment do not fully understand the basic fundamentals of refrigeration system operation.

This manual is designed to fill a need which exists for a concise, elementary text to aid servicemen, salesman, students, and others interested in refrigeration. It is intended to cover only the fundamentals of refrigeration theory and practice. Detailed information as to specific products is available from manufacturers of complete units and accessories. Used to supplement such literature—and to improve general knowledge of refrigeration—this manual should prove to be very helpful.

Part 3 THE REFRIGERATION LOAD

Section 12. HEAT TRANSMISSION

Transmission Heat Load — Q	12-1
Thermal Conductivity — k	12-1
Thermal Resistivity – r	12-1
Conductance — C	12-1
Thermal Resistance — R	12-1
Surface File Resistance	12-1
Overall Coefficient of Heat Transfer - U	12-1
Transmission Heat Load	12-2
Values of Thermal Conductivity for	
Building Materials	12-3
Outdoor Design Data	12-3
Allowance for Radiation from the Sun	12-8
Recommended Insulation Thickness	12-8
Quick Calculation Table for Walk-in Coolers	12-9

Section 13. AIR INFILTRATION

Air Change Estimating Method	13-1
Air Velocity Estimating Method	13-1
Ventilating Air	13-2
Infiltration Heat Load	13-2

Section 14. PRODUCT LOAD

Tables of Specific Product Data	14-1
Heat of Respiration	14-1
Sensible Heat Above Freezing	14-7
Latent Heat of Freezing	14-8
Sensible Heat Below Freezing	14-8
Total Product Load	14-8
Storage Data	14-8

Section 15. SUPPLEMENTARY LOAD

Electric Lights and Heaters1	5-1
Electric Motors1	5-1
Human Heat Load1	5-1
Total Supplementary Load1	5-1

Section 16. EQUIPMENT SELECTION

Hourly Load	16-1
Sample Load Calculation	16-1
Relative Humidity and Evaporator TD	16-2
Compressor Selection	16-2
Component Balancing	16-3
The Effect of Change in Compressor	
Only on System Balance	16-9
Quick Select Tables for Walk-in Coolers	16-11

INDEX OF TABLES

Typical Heat Transmission Coefficients	12-3
Summer Outdoor Design Data	12-5
Allowance for Sun Effect	12-8
Recommended Minimum Insulation Thickness	12-9
Quick Estimate Factors for Heat Transmission Through Insulated Walls	12-9
Average Air Changes per 24 Hours for Storage Rooms Due to Opening and Infiltration	13-1
Heat Removed in Cooling Air to Storage Room Conditions	13-2
Food Products Data	14-1
Properties of Solids	14-4
Properties of Liquids	14-6
Storage Requirements and Properties of Perishable Products	14-9
Storage Conditions for Cut Flowers and Nursery Stock	14-11
Space, Weight, and Density Data for Commodities Stored in Refrigerated Warehouses	14-12
Heat Equivalent of Electric Motors	15-1
Heat Equivalent of Occupancy	15-1
Recommended Condensing Unit Capacity for Walk-in Coolers, 35°F. Temperature	16-12
Recommended Condensing Unit Capacity for Walk-in Coolers, Low Temperature	16-12
	Typical Heat Transmission Coefficients

Section 12 HEAT TRANSMISSION

The heat gain through walls, floors and ceilings will vary with the type of construction, the area exposed to a different temperature, the type of insulation, the thickness of insulation, and the temperature difference between the refrigerated space and the ambient air.

In catalog and technical literature pertaining to heat transfer, certain letter symbols are commonly used to denote the heat transfer factors, and a working knowledge of these symbols is frequently necessary to easily interpret catalog data.

TRANSMISSION HEAT LOAD — Q

The basic formula for heat transfer through some heat transfer barrier is:

- $Q = U \times A \times TD$
- Q = Heat transfer, BTU/Hr
- U = Overall heat transfer coefficient BTU/(hour)(sq. ft.)(°F TD)
- A = Area in square feet
- TD = Temperature differential between sides of thermal barrier, for example, between outside design temperature and the refrigerated space temperature.

Q is the rate of heat flow, the quantity of heat flowing after all factors are considered.

THERMAL CONDUCTIVITY - k

Thermal conductivity, k, is defined as the rate of heat transfer that occurs through a material in units of BTU/(hr)(square foot of area)(°F TD) per inch of thickness. Different materials offer varying resistances to the flow of heat.

For example, the heat transfer in 24 hours through two square feet of material three inches in thickness having a thermal conductivity factor of .25 with an average temperature difference across the material of 70°F would be calculated as follows:

 $Q = \frac{.25(k) \times 2 \text{ sq. ft. } \times 24 \text{ hours } \times 70^{\circ} \text{ TD}}{3 \text{ inches thickness}} = 280 \text{ BTU}$

Since the total heat transferred by conduction varies directly with time, area, and temperature difference, and varies inversely with the thickness of the material, it is readily apparent that in order to reduce heat transfer, the thermal conductivity factor should be as small as possible, and the material as thick as possible.

THERMAL RESISTIVITY - r

Thermal resistivity is defined as the reciprocal of thermal conductivity of 1/k. "r" is of importance because resistance values can be added numerically.

R total =
$$r_1 + r_2 + r_3$$

Where r_1 , r_2 , and r_3 are individual resistances. This makes the use of r convenient in calculating overall heat transfer coefficients.

CONDUCTANCE - C

Thermal conductance is similar to thermal conductivity, except that it is an overall heat transfer factor for a given thickness of material, as opposed to thermal conductivity, k, which is a factor per inch of thickness. The definition is similar, BTU/(hour)(square foot of area)(°F TD).

THERMAL RESISTANCE — R

Thermal resistance is the reciprocal of conductance, 1/C in the same way that thermal resistivity is the reciprocal of conductivity.

SURFACE FILM RESISTANCE

Heat transfer through any material is affected by the surface resistance to heat flow, and this is determined by the type of surface, rough or smooth; its position, vertical or horizontal; its reflective properties; and the rate of airflow over the surface. Surface film conductance, normally denoted by f_i for inside surfaces and f_o for outside surfaces is similar to conductance.

However, in refrigeration work with insulated walls, the conductivity is so low that the surface film conductance has little effect, and therefore, can be omitted from the calculation.

OVERALL COEFFICIENT OF HEAT TRANSFER — U

The overall coefficient of heat transfer, U, is defined as the rate of heat transfer through a material or compound structural member with parallel walls. The U factor, as it is commonly called, is the resulting heat transfer coefficient after giving effect to thermal conductivity, conductance, and surface film conductance, and is expressed in terms of BTU/(hour) (square foot of area)(°F TD). It is usually applied to compound structures such as walls, ceilings, and roofs.

The formula for calculating the U factor is complicated by the fact that the total resistance to heat flow through a substance of several layers is the sum of the resistance of the various layers. The resistance of heat flow is the reciprocal of the conductivity. Therefore, in order to calculate the overall heat transfer factor, it is necessary to first find the overall resistance to heat flow, and then find the reciprocal of the overall resistance to calculate the U factor.

The basic relation between the U factor and the various conductivity factors is as follows:

R Total =
$$\begin{array}{c} 1 \\ C \end{array}$$
 + $\begin{array}{c} X1 \\ k1 \end{array}$ + $\begin{array}{c} X2 \\ k2 \end{array}$
U= $\begin{array}{c} 1 \\ R \end{array}$ Total

In the above equation, k_1 , k_2 , etc. are the thermal conductivities of the various materials used, C is the conductance if it applies rather than k_1 , and X_1 , X_2 , etc. are the thicknesses of the material.

For example, to calculate the U factor of a wall composed of two inches of material having a k1 factor of .80, and two inches of insulation having a conductance of .16, the U value is found as follows:

R Total =
$$\frac{1}{C} + \frac{X_1}{k_1}$$

= $\frac{1}{.16} + \frac{2}{.80}$
= $6.25 + 2.5 = 8.75$
U = $\frac{1}{R}$ Total = $\frac{1}{8.75}$

=.114 BTU/(hour)(sq. ft.)(°F TD)

TRANSMISSION HEAT LOAD

Once the U factor is known, the heat gain by transmission through a given wall can be calculated by the basic heat transfer equation.

Assume a wall with a U factor of .114 as calculated in the previous example. Given an area of 90 square feet with an inside temperature of 0°F, an outside temperature of 80°F, the heat transmission would be:

The entire heat gain into a given refrigerated space can be found in a similar manner by determining the U factor for each part of the structure surrounding the refrigerated space, and calculating as above.

VALUES OF THERMAL CONDUCTIVITY FOR BUILDING MATERIALS

Extensive testing has been done by many laboratories to determine accurate values for heat transfer through all common building and structural materials. Certain materials have a high resistance to the flow of heat (a low thermal conductivity) and are therefore used as insulation to decrease the heat transfer into the refrigerated space. There are many different types of insulation such as asbestos, glass fiber, cork, reflective metals, and the new foam materials. Most good insulating materials have a thermal conductivity (k) factor of approximately .25 or less, and rigid foam insulations have been developed with thermal conductivity (k) factors as low as .12 to .15.

Heat transmission coefficients for many commonly used building materials are shown in Table 4.

OUTDOOR DESIGN DATA

Extensive studies have been made of weather bureau records for many years to arrive at suitable outdoor design temperatures. For air conditioning or refrigeration applications, the maximum load occurs during the hottest weather.

However, it is neither economical or practical to design equipment for the hottest temperature which might ever occur, since the peak temperature might occur for only a few hours over the span of several years. Therefore, the design temperature normally is selected as a temperature that will not be exceeded more than a given percentage of the hours during the four month summer season. Table 5 lists summer design temperatures, which will be equaled or exceeded only during 1% of the hours during the four summer months.

(continued on p. 12-8)

Table 4

TYPICAL HEAT TRANSMISSION COEFFICIENTS (Extracted from ASHRAE Handbook of Fundamentals, Reprinted by Permission)

	Density	Conduc-	Conduc-	Resistance (R)	
Material	lb/cu.ft.	k	C	Per In.	Overall
BUILDING BOARD					
Asbestos-Cement Board	120	4.0		.25	
Gypsum or Plaster, 1/2"	50		2.22		.45
Plywood	34	.80		1.25	
Wood Fiber, Hardboard	50	.73		1.37	
BUILDING PAPER					
Felt, Vapor-permeable			16.70		.06
Plastic Film, Vapor-seal					Neglibile
FLOORING MATERIALS					
Tile, Asphalt, Vinyl, Linoleum	1		20.0		.05
Wood Flooring, 3/4"			1.47		.68
INSULATING MATERIALS					
Fiber Glass Blanket	0.5	.32		3.12	
Expanded Urethane, R11	1.5	.16		6.25	
Expanded Polystyrene	1.8	.16		6.25	
Insulating Roof Deck, 2"			.18		5.56
Mineral Wool Loose Fill	2.0-5.0	.40		2.5	
Perlite, Expanded	5.0-8.0	.36		2.78	
Cellulose, Paper	3.0	.30		3.3	

Table 4 (Cont.)

TYPICAL HEAT TRANSMISSION COEFFICIENTS

	Density	Conduc-	Conduc-	Resistance (R)	
Material	lb/cu.ft.	k	C	Per In.	Overall
MASONRY MATERIALS					
Concrete, Sand & Gravel	140	9.0		.11	
Brick, Common	120	5.0		.20	
Brick, Face	130	9.0		.11	
Hollow Tile, 2 cell, 6"	1		.66		1.52
Concrete Block, Sand and Gravel, 8"			.90		1.11
Concrete Block, Cinder, 8"			.58		1.72
ROOFING					
Shingles, Asbestos-Cement	120		4.76		.21
Asphalt Roll Roofing	70		6.50		.15
Roofing, Built Up, 3/8"	70		3.0		.33
Shingles, Wood			1.06		.94
SIDING					
Plywood 3/8"			1.59		.59
WOODS					
Maple, Oak, Hardwood	45	1.10		.91	
Fir, Pine, Softwood	32	.80		1.25	
CONCRETE SLAB, 6"					
Uninsulated			.21		

Table 5

SUMMER OUTDOOR DESIGN DATA

(Design dry bulb and wet bulb temperature represents temperature equalled or exceeded during 1% of hours during the four summer months.) (Extracted from 1981 ASHRAE Handbook of Fundamentals, Reprinted by Permission)

Location	Dry Bulb °F.	°F. Location °F.		°F. Location		Dry Bulb °F.	Wet Bulb °F.
ΔΙΔΒΔΜΔ				GEORGIA			
Birmingham	96	74		Atlanta	94	74	
Mobile	95	77		Savannah	96	77	
ALASKA				HAWAII			
Fairbanks	82	62		Honolulu	87	73	
Juneau	74	60					
				IDAHO			
ARIZONA				Boise	96	65	
Phoenix	109	71					
Tucson	104	66		ILLINOIS			
				Chicago	94	74	
ARKANSAS				Springfield	94	75	
Fort Smith	101	75					
Little Rock	99	76		INDIANA			
				Fort Wayne	92	73	
CALIFORNIA				Indianapolis	92	74	
Bakersfield	104	70					
Blythe	112	71		IOWA			
Los Angeles	93	70		Des Moines	94	75	
San Francisco	82	64		Sioux City	95	74	
Sacramento	101	70					
				KANSAS			
COLORADO				Dodge City	100	69	
Denver	93	59		Wichita	101	72	
CONNECTICUT				KENTUCKY			
Hartford	91	74		Lexington	93	73	
				Louisville	95	74	
DELAWARE							
Wilmington	92	74		LOUISIANA			
				New Orleans	93	78	
D.C.				Shreveport	99	77	
Washington	93	75					
				MAINE			
FLORIDA				Portland	87	72	
Jacksonville	96	77					
Miami	91	77		MARYLAND			
Tampa	92	77		Baltimore	94	75	

Table 5 (cont.)

SUMMER OUTDOOR DESIGN DATA

(Design dry bulb and wet bulb temperature represents temperature equalled or exceeded during 1% of hours during the four summer months.)

(Extracted from 1981 ASHRAE Handbook of Fundamentals, Reprinted by Permission)

Location	Dry Bulb °F.	Wet Bulb °F.		Location	Dry Bulb °F.	Wet Bulb °F.
MASSACHUSETTS			NFW	MEXICO		
Boston	91	73	Alt	buquerque	96	61
Worcester	87	71	Sa	nta Fe	90	61
MICHIGAN			NEW	YORK		
Detroit	91	73	All	banv	91	73
Grand Rapids	91	72	Bu	ffalo	88	71
·			Ne	w York	92	74
MINNESOTA						
Duluth	85	70	NOR	TH CAROLINA		
Minneapolis	92	75	Ch	arlotte	95	74
MISSISSIPPI			NOR	ΤΗ DAKOTA		
Biloxi	94	79	Bis	mark	95	68
Jackson	97	76				
			OHIC)		
MISSOURI			Cir	ncinnati	92	73
Kansas City	99	75	Cle	eveland	91	73
St. Louis	97	75				
			OKLA	AHOMA		
			Tu	lsa	101	74
MONTANA						
Billings	94	64	OREC	GON		
Helena	91	60	Per	ndleton	97	65
			Poi	Portland 90		68
NEBRASKA						
Omaha	94	76	PENN	NSYLVANIA		
			Phi	iladelphia	93	75
NEVADA			Pit	tsburgh	89	72
Las Vegas	108	66	DUO			
Reno	95	61	RHOL	DE ISLAND		
			Pro	pvidence	89	/3
	00	70	2011			
Concord	90	12	000 Ch/	arleston	04	70
				a11031011	94	/8
Newark	94	74	SOUT	τη σακότα		
Trenton	91	75	Sig	ux Falls	٩٨	72
		, , , ,		and and	57	/3

Table 5 (cont.)

SUMMER OUTDOOR DESIGN DATA

(Design dry bulb and wet bulb temperature represents temperature equalled or exceeded during 1% of hours during the four summer months.) (Extracted from 1981 ASHRAE Handbook of Fundamentals, Reprinted by Permission)

Location	Dry Bulb °F.	Wet Bulb °F.	Location	Dry Bulb °F.	Wet Bulb °F.
TENNESSEE			CANADA		
Memphis	98	77	GARADA		
Nashville	97	75			
Trastivino		,	Calgary	84	63
TEXAS			ouigui y	0.	
Dallas	102	75	BRITISH COLUMB	A	
El Paso	100	64	Vancouver	79	67
Galveston	90	79			
Houston	97	77	MANITOBA		
			Winnipeg	89	73
UTAH					
Salt Lake City	97	62	NEW BRUNSWICK		
			St. John	80	67
VERMONT	}				
Burlington	88	72	NEWFOUNDLAND		
		Ì	Gander	82	66
VIRGINIA					
Richmond	95	76	NOVA SCOTIA		
Roanoke	93	72	Halifax	79	66
MARNINGTON					
WASHINGTON	04	60	UNTARIO	00	72
Seattle	02	64	Toronto	90	/3
Spokane	95	65	OUEREC		
Takhila	50	05	Montreal	86	71
			Wontreal	00	
Charleston	92	74	SASKATCHEWAN		
Charloston	02		Regina	91	69
WISCONSIN					
Milwaukee	90	74	YUKON		
			Whitehorse	80	59
WYOMING					
Cheyenne	89	58			

ALLOWANCE FOR RADIATION FROM THE SUN

The primary radiation factor involved in the refrigeration load is heat gain from the sun's rays. If the walls of the refrigerated space are exposed to the sun, additional heat will be added to the heat load. For ease in calculation, an allowance can be made for the sun load in refrigeration calculations by increasing the temperature differential by the factors listed in Table 6.

This table is usable for refrigeration loads only, and is not accurate for air conditioning estimates.

RECOMMENDED INSULATION THICKNESS

As the desired storage temperature decreases, the refrigeration load increases, and as the evaporating temperature decreases, the compressor efficiency decreases. Therefore, from a practical and economic standpoint, the insulation thickness must be increased as the storage temperature decreases.

Table 7 lists recommended insulation thickness from the 1981 ASHRAE Handbook of Fundamentals. The recommendations are based on expanded polyurethane which has a conductivity factor of .16. If other insulations are used, the recommended thickness should be adjusted base on relative k factors.

TABLE 6

ALLOWANCE FOR SUN EFFECT

(Fahrenheit degrees to be added to the normal temperature difference for heat leakage calculations to compensate for sun effect not to be used for air conditioning design)

Type of Surface	East wall	South wall	West wall	Flat roof
Dark colored surfaces, such as Slate roofing Tar roofing Black paints	8	5	8	20
Medium colored surfaces, such as Unpainted wood Brick Red tile Dark cement Red, gray or green paint	6	4	6	15
Light colored surfaces, such as White stone Light colored cement White paint	4	2	4	9

From 1981 SHRAE Handbook of Fundamentals, Reprinted by Permission

QUICK CALCULATION TABLE FOR WALK-IN COOLERS

As an aid in the quick calculation of heat transmission through insulated walls, Table 7A lists the approximate heat gain in BTU per 1°F. temperature difference per square foot of surface per 24 hours for various thicknesses of commonly used insulations. The thickness of insulation referred to is the actual thickness of insulation, and not the overall wall thickness.

For example, to find the heat transfer for 24 hours through a 6' x 8' wall insulated with 4 inches of glass fiber when the outside is exposed to $95^{\circ}F$ ambient temperature, and the box temperature is $0^{\circ}F$, calculate as follows:

1.9 factor x 48 sq. ft. x 95°TD = 8664 BTU

Table 7

RECOMMENDED MINIMUM INSULATION THICKNESS Based on k factor of .16

Storage	Insulation Thickness, Inches							
Temperature	Northern U.S.	Southern U.S.						
50 to 60°F	1	2						
40 to 50°F	2	2						
25 to 40°F	2	3						
15 to 25°F	3	3						
0 to 15°F	3	4						
–15 to 0°F	4	4						
–40 to –15°F	5	5						
	1	1						

Table 7A

QUICK ESTIMATE FACTORS For HEAT TRANSMISSION THROUGH INSULATED WALLS BTU per 1°F. TD per sq. ft. per 24 hours

Inculation	Inches of Insulation										
insulation	2	3	4	5	6	7	8	9	10	11	12
k factor approx16 Expanded Polyurethane, Expanded Polystyrene	1.92	1.28	.96	.77	.64	.55	.48	.43	.38	.35	.32
k factor approx32 Glass fiber, Mineral Wool fill and board.	3.8	2.6	1.9	1.5	1.3	1.1	.96	.86	.76	.70	.64

SECTION 13 AIR INFILTRATION

Any outside air entering the refrigerated space must be reduced to the storage temperature, thus increasing the refrigeration load. In addition, if the moisture content of the entering air is above that of the refrigerated space, the excess moisture will condense out of the air, and the latent heat of condensation will add to the refrigeration load.

Because of the many variables involved, it is difficult to calculate the additional heat gain due to air infiltration. Various means of estimating this portion of the refrigeration load have been developed based primarily on experience, but all of these estimating methods are subject to the possibility of sizable error, and specific applications may vary widely in the actual heat gain encountered.

AIR CHANGE ESTIMATING METHOD

The traffic in and out of a refrigerator usually varies with its size or volume. Therefore the number of times doors are opened will be related to the volume rather than the number of doors.

Table 8 lists estimated average air changes per 24 hours for various sized refrigerators due to door openings and infiltration for a refrigerated storage room. Note that these values are subject to major modification if it is definitely determined that the usage of the storage room is either heavy or light.

AIR VELOCITY ESTIMATING METHOD

Another means of computing infiltration into a refrigerated space is by means of the velocity of airflow through an open door. When the door of a refrigerated storage space is opened, the difference in density between cold and warm air will create a pressure differential causing cold air to flow out the bottom of the doorway and warm air to flow in the top. Velocities will vary from maximum at the top and bottom to zero in the center.

The estimated average velocity in either half of the door is 100 feet per minute for a doorway seven feet high at 60°F. TD. The velocity will vary as the square root of the height of the doorway and as the square root of the temperature difference.

For example the rate of infiltration through a door 8 feet high and 4 feet wide, with a 100°F. TD between the storage room and the ambient can be estimated as follows:

Velocity = 100 FPM x
$$\frac{\sqrt{8}}{\sqrt{7}}$$
 x $\frac{\sqrt{100}}{\sqrt{60}}$
=100 x $\frac{2.83}{2.65}$ x $\frac{10}{7.74}$
= 138 FPM

Estimated rate of Infiltration

138 FPM x <u>8 ft. x 4 ft.</u> = 2210 cu. ft per min. 2

Infiltration velocities for various door heights and TDs are plotted in Figure 67.

If the average time the door is opened each hour can be determined, the average hourly infiltration can be calculated, and the heat gain can be determined as before.

Table 8

AVERAGE AIR CHANGES PER 24 HR. FOR STORAGE ROOMS DUE TO DOOR OPENINGS AND INFILTRATION

Volume cu. ft.	Air Ch per 2	anges 4 hr.	Volume cu. ft.	Air Changes per 24 hr.			
	Above 32 F	Below 32 F		Above 32 F	Below 32 F		
200	44.0	33.5	6,000	6.5	5.0		
300	34.5	26.2	8,000	5.5	4.3		
400	29.5	22.5	10,000	4.9	3.8		
500	26.0	20.0	15,000	3.9	3.0		
600	23.0	18.0	20,000	3.5	2.6		
800	20.0	15.3	25,000	3.0	2.3		
1,000	17.5	13.5	30,000	2.7	2.1		
1,500	14.0	11.0	40,000	2.3	1.8		
2,000	12.0	9.3	50,000	2.0	1.6		
3,000	9.5	7.4	75,000	1.6	1.3		
4,000	8.2	6.3	100,000	1.4	1.1		
5,000	7.2	5.6					

Note: For heavy usage multiply the above values by 2. For long storage multiply the above values by 0.6.

From 1981 ASHRAE Handbook of Fundamentals, Reprinted by Permission

VENTILATING AIR

If positive ventilation is provided for a space by means of supply or exhaust fans, the ventilation load will replace the infiltration load (if greater) and the heat gain may be calculated on the basis of the ventilating air volume.

INFILTRATION HEAT LOAD

Once the rate of infiltration has been determined, the heat load can then be calculated from the heat gain

per cubic foot of infiltration as given in Table 9. For accurate calculations at conditions not covered by Table 9, the heat load can be determined by the difference in enthalpy between entering air and the storage room air conditions. This is most easily accomplished by use of the psychrometric chart, which will be discussed in detail in a subsequent section.

Table 9

HEAT REMOVED IN COOLING AIR TO STORAGE ROOM CONDITIONS (BTU per cu. ft.)

	Temperature of Outside Air, F										
Storage room	8	5	90)	9!	5	10	0			
temp F	Relative Humidity, Percent										
1	50	60	50	60	50	60	50	60			
65 60 55 50 45 40 35 30	0.45 0.66 0.85 1.03 1.19 1.35 1.50 1.64	0.64 0.85 1.04 1.22 1.39 1.55 1.70 1.84	0.68 0.89 1.08 1.26 1.43 1.59 1.74 1.88	0.91 1.12 1.31 1.49 1.66 1.81 1.96 2.10	0.93 1.14 1.33 1.51 1.68 1.83 1.99 2.13	1.20 1.41 1.60 1.78 1.94 2.10 2.25 2.39	1.21 1.42 1.61 1.79 1.95 2.11 2.26 2.40	1.51 1.71 2.09 2.25 2.41 2.56 2.70			
Storage room	40 50 90						10)0			
temp F			·	Relative Humi	dity, Percent	<u></u>	J				
	70	80	70	80	50	60	50	60			
25 20 15 10 5 0 - 5	0.39 0.52 0.65 0.77 0.89 1.01	0.43 0.56 0.69 0.82 0.94 1.05	0.69 0.82 1.08 1.20 1.31	0.75 0.89 1.01 1.14 1.26 1.38	2.02 2.15 2.28 2.40 2.52 2.64 2.76	2.24 2.38 2.50 2.63 2.75 2.86 2.98	2.54 2.68 2.93 3.05 3.16 3.28	2.84 2.97 3.10 3.22 3.34 3.46 2.58			
-10 -15 -20 -25	1.13 1.24 1.36 1.48 1.60	1.17 1.29 1.41 1.52 1.64	1.43 1.55 1.67 1.78 1.90	1.45 1.61 1.73 1.85 1.97	2.99 3.11 3.23	3.10 3.22 3.34 3.45	3.40 3.52 3.64 3.75	3.56 3.70 3.81 3.93 4.05			

From 1981 ASHRAE Handbook of Fundamentals, Reprinted by Permission

SECTION 14 PRODUCT LOAD

The product load is composed of any heat gain occurring due to the product in the refrigerated space. The load may arise from a product placed in the refrigerator at a temperature higher than the storage temperature, from a chilling or freezing process, or from the heat of respiration of perishable products. The total product load is the sum of the various types of product load which may apply to the particular application.

TABLES OF SPECIFIC PRODUCT DATA

The following tables list data on specific products that is essential in calculating the refrigeration product load. Table 10 covers food products, Table 11 solids, and Table 12 liquids.

HEAT OF RESPIRATION

Fruits and vegetables, even though they have been removed from the vine or tree on which they grew, are still living organisms. Their life processes continue for some time after being harvested, and as a result they give off heat. Certain other food products also undergo continuing chemical reactions which produce heat. Meats and fish have no further life processes and do not generate any heat.

The amount of heat given off is dependent on the specific product and its storage temperature. Table 10 lists various food products with pertinent storage data. Note that the heat of respiration varies with the storage temperature.

(continued on p. 14-7)

	Average Freezing	Percent	SP ht, Btv/	(lb) (F deg)	Latent Heat of	Hea Btu pe	t of Respiration er (24 hr) (ton)
Product	Point	Water	Above	Below	Fusion Bty/1b	at T	emp. Indicated
	r r		rreezing	rreezing	BIO/ ID	F	BTU
VEGETABLES		M					
Artichokes	29.1	83.7	0.87	0.45	120	40	10,140
Asparagus	29.8	93	0.94	0.48	134	40	11,700-23,100
Beans, string	29.7	88.9	0.91	0.47	128	40	9700-11400
Beans, Lima	30.1	66.5	0.73	0.40	94	40	4300-6100
Beans, dried		12.5	0.30	0.24	18		
Beets	31.1	87.6	0.90	0.46	126	32	2700
						40	4100
Broccoli	29.2	89.9	0.92	0.47	130	40	11,000-17,000
Brussels sprouts	31	84.9	0.88	0.46	122	40	6600-11,000
Cabbage	31.2	92.4	0.94	0.47	132	40	1700
Carrots	29.6	88.2	0.90	0.46	126	32	2100
						40	3500
Cauliflower	30.1	91.7	0.93	0.47	132	40	4500
Celery	29.7	93.7	0.95	0.48	135	32	1600
						40	2400
Corn (green)	28.9	75.5	0.79	0.42	106	32	7200-11,300
						40	10,600-13,200
Corn (dried)	1	10.5	0.28	0.23	15		
Cucumbers	30.5	96.1	0.97	0.49	137		
Eggplant	30.4	92.7	0.94	0.48	132		
Endive (escarole)	30.9	93.3	0.94	0.48	132		
Horseradish	26.4	73.4	0.78	0.42	104		
Kale	30.7	86.6	0.89	0.46	124		
Kohlrabi	30	90	0.92	0.47	128		
Lettuce	31.2	94.8	0.96	0.48	136	32	2300
						40	2700
Mushrooms	30.2	91.1	0.93	0.47	130	32	6200
						50	22,000
Olives	28.5	75.2	0.80	0.42	108		
Onions	30.1	87.5	0.90	0.46	124	32	700-1100
						40	1800

Table 10 FOOD PRODUCTS DATA

	Average Freezing	Percent	SP ht, Btu/	(Ib) (F deg)	Latent Heat of	Heat Btu pe	Heat of Respiration Btu per (24 hr) (ton)		
Product	Point F	Water	Above Freezing	Below Freezing	Fusion Btu/lb	at T °F	emp. Indicated		
						· ·			
Parsnips	28.9	78.6	0.84	0.46	112				
Peas (green)	30	74.3	0.79	0.42	108	40	13,200-16,000		
Peas (dried)		9.5	0.28	0.22	14				
Peppers (sweet)	30.1	92.4	0.94	0.47	132	40	4700		
Potataes (white)	28.9	77.8	0.82	0.43	111	40	1300-1800		
Potatoes (sweet)	28.5	68.5	0.75	0.40	97	40	1710		
Pumpkin	30.1	90.5	0.92	0.47	130				
Radishes	30.1	93.6	0.95	0.48	134				
Rhubarb	28.4	94.9	0.96	0.48	134				
Sauerkraut	26	89	0.92	0.47	129				
Spingch	30.3	92.7	0.94	0.48	132	40	8000		
Squash	30.1	90.5	0.02	0.47	130				
Tomatoon (groon)	20.4	04.7	0.05	0.49	124	40	6220		
Tomotoes (green)	30.4	94.7	0.95	0.40	134	00	10230		
Tomatoes (ripening)	30.4	94.1	0.95	0.48	134	40	1200		
Turnips	30.5	90.9	0.93	0.47	130	32	2200		
Vegetables (mixed)	30	90	0.90	0.45	130				
MEATS AND FISH		-		1					
Bacon		20	0.50	0.30	29				
Beef (dried)		5-15	0,22-0.34	0.19-0.26	7-22				
Beef (fresh-lean)	29	68	0.77	0.40	100	1			
Beef (fresh-fat)	28		0.60	0.35	79				
Brined meats			0.75						
Cod fish (fresh)	28		0.90	0.49	119				
Cut ments	29	65	0.72	0.40	95				
Eich (france)	29	70	0.74	0.41	101				
Fish (frozen)	2°	70	0.70	0.41	101				
Fish (dried)		70	0.56	0.34	65				
Hams and Joins	27	60	86.0	0.38	86.5				
famb	20	58	0.67	0.30	83.5				
Lamb	27	50	0.07	0.30	03.3				
Livers	29	65.5	0.72	0.40	93.3	1			
Oyster (shell)	27	80.4	0.83	0.44	116				
Oysters (tub)	27	87	0.90	0.46	125				
Pork (fresh)	28	60	0.68	0.38	86.5				
Pork (smoked)		57	0.60	0.32					
Poultry (fresh)	27	74	0.79	0.37	106				
Poultry (frozen)	27	74	0.79	0.37	106				
Sousage (casings)	-		0.60						
Sausage (drying)	26	65.5	0.89	0.56	93				
Sausage (franks)	29	60	0.86	0.56	86				
Sausage (fresh)	26	65	0.89	0.56	93				
Sausage (nesh)	25	40	0.86	0.56	86				
Subsuge (smoked)	29	80.2	0.00	0.48	116	1			
scallops	20	30.3	0.07	0.40	110				
Shrimp	28	/0.8	0.83	0.45	01				
Veal	29	63	0.71	0.39	ΥI				
MISCELLANEOUS			1.0						
beer	1 20	¥2	1.0		44 80				
Bread		32-3/	0.70	0.34	40-33				
Bread (dough)		58	0.75		_				
Butter	30-0	15	0.64	0.34	15				
Covier (tub)	20	55	5.75			40	3820		
	17	40	0.44	0.24	70	40	4680		
Cheese (American)		80	0.84	0.30		1.0	4000		
Cheese (Camembert)	81	60	0.70	0.40	80	40	4920		
Cheese (Limburger)	19	55	0.70	0.40	86	40	4920		
Cheese (Roquefort)	3	55	0.65	0.32	79	45	4000		
Cheese (Swiss)	15	55	0.64	0.36	79	40	4660		
Chocolate (coatina)	95-85	55	0.30	0.55	40				
Cream (40%)	28	73	0.85	0.40	90		1		
Faas (crated)	27		0.76	0.40	100	1	1		
	27		0.70	0 41	100				
Elaura	L/	17.5	0.20	0.41	1 100	·			
FIGUE		13.5	0.30	V.10	1	100	Ing ft Flags Ares		
riowers (cut)	32			0.40		400/	ay, II. HOOF Area		
rurswoolens]			0.40					

Table 10 (cont.)FOOD PRODUCTS DATA

D , has	Average Freezing	Percent	SP ht, Btu/	(lb) (F deg)	Latent Heat of	Hea Btu pe	Heat of Respiration Btu per (24 hr) (ton)		
Product	Point F	Water	Above Freezing	Below Freezing	Fusion Bty/lb	at T °F	emp. Indicated		
Honey		18	0.35	0.26	26	40	1420		
Hops			0.000	0.20		35	1500		
lce cream	27-0	58-66	0.78	0.45	96				
lard			0.52						
Malt		1				50	1500		
Maple sugar		5	0.24	0.21	7	45	1420		
Maple syrup		36	0.49	0.31	52	45	1420		
Milk	31	87.5	0.93	0.49	124				
Nuts (dried)		3-10	0 21-0 29	0.19-0.24	4.3-14	35	1000		
Oleomargarine		15.5	0.32	0.25	22				
Tobacco and cinars	25	10.0	0.02	0.20					
Yeast		70.9	0.77	0.41	102				
FRUITS									
Apples	28.4	84.1	0.86	0.45	121	32	830		
Americante	101	05.4	0.00	0.44	100	40	1435		
Apricots	20.1	03.4	0.00	0.40	122	1 10	12 200 20 700		
Avocadoes	27.2	74 0	0.91	0.49	130	00	13,200-39,700		
Bananas	28	/4.8	0.80	0.42	108	08	8400-9200		
Blackberries	28.9	85.3	0.88	0.46	122		1000 0000		
Blueberries	28.6	82.3	0.88	0.45	118	32	1300-2200		
Cantaloupes	29	92.7	0.94	0.48	132	40	2000		
Cherries	26	83	0.87	0.45	120	00	8300		
Crapherries	273	874	0.90	0.46	124	1			
Currents	30.2	847	0.88	0.45	120				
Detec (dry)	-41	20	0.36	0.76	20				
Dates (dry)	27.1	79	0.50	0.43	112				
Eles (mesh)	27.1	70	0.02	0.43	112	1			
Figs (riesil)	27.1	24	0.02	0.43	24	1			
Figs (dried)	19.0	60.2	0.37	0.27	194				
Gooseberries	20.9	00.3	0.90	0.40	120	1 22	140		
Grapetruit	28.4	0.00	0.91	0.40	120	32	1070		
•		01.7	0.07	0.44	11/	40	1070		
Grapes	26.3	81./	0.80	0.44	110	30	830		
Honey Dew Melon	20	92.0	0.94	0.48	132	40	1000		
Lemons	28.1	89.3	0.92	0.40	127	40	810		
			0.00			00	2970		
Limes	29	86	0.89	0.46	122	40	2070		
Hangoor	32	03	0.00	0.46	134	00	2970		
Mangoes	20	92.0	0.90	0.40	110	1			
Nectorines	10	02.7	0.70	0.47	124	22	705		
Oranges	20	07.2	0.70	0.40	124	10	1400		
D	20.4	94.0	0.00	0.44	124	22	1110		
reaches	29.4	00.9	0.90	0.40	124	10	1725		
Boger	29.5	83.5	0.86	0.45	118	32	770		
Persimment	20.5	79.2	0.84	0.43	112	52	1 110		
Pineannlos	20.3	853	0.88	0.45	122				
rineuppies	27.4	03.5	0.00	0.45	123				
Plums	20	77	0.00	0.45	122				
romegranates	20	057	0.07	0.40	112				
rrunes (tresh)	28	85./	0.88	0.45	123				
Quinces	28.1	85.3	0.88	0.45	122		(000 0500		
Raspberries	30.1	82	0.85	0.45	122	40	0000-8500		
		-				00	18,100-22,300		
Strawberries	29,9	90	0.92	0.47	129				
Tangerines	28.0	87.3	0.93	0.51	126	32	3265		
		1				40	5865		
Watermelons	29.2	92.1	0.97	0.48	132	1			

Table 10 (cont.) FOOD PRODUCTS DATA

(Extracted from 1967 ASHRAE Handbook of Fundamentals, Reprinted by Permission)

	Specifi	c Heat		Thermo	al Conductivity*
Name or Description	Btu per (Ib) (F deg)	Temp F	- Specific Gravity	Temp F	k
Aluminum	0.226	100	2.55-2.80	32	122.0
Aluminum bronze		1	7.7		
Alundum	0.186	212			
Abestos	0.25	0.47-0.58	2.1-2.8	32	0.09
Asphalt	0.3-0.4				
Ashes	0.20		0.64-0.72	32	0.041
Bakelite	0.3-0.4				
Brickwork	0.2		1.85-2.00	70	0.33-0.92
Brass, red	0.08991	32	8.4-8.7	32	59.5
Brass, yellow	0.08831	32	8.4-8.7	32	49.4
Bismuth tin	0.040			64	37.6
Beli metal	0.086	59-208.4			
Bronze	0.104		7.4-8.8		
Cadmium	0.0548		8.65	64	53.7
Carbon (gas refort)	0.204				
Cordboard					0.1-0.2
Cellulose	0.32				
Cement, Portland clinker	0.186		1.5-2.4		0.017
Charcoal (wood)	0.242		0.28-0.57	172	0.051
Chrome brick	0.17		1.00		
Cont	0.224		1.28		
Coal tar	0.20-0.37	104	0.03-1.0		
Coal tar oils	0.35	ED 104			
Coke	0.34	60 9 752	1014	22	0.104
Concrete (stone)	0.156	70,213	1.0-1.4	32	0.108
Copper (cast colled)	0.150	70-213	88.89	32	224.0
Cryolite	0.253	60.8,131	0.0-0.7	52	224.0
Chalk	0:215	00.0101	18.28		0.48
Cork (granulated rolled)	0.485		0.22-0.26	24	0.028
Cotton (flax, hemp)	0.100		1.47-1.50	32	0.033
Cotton (wool)					0.01
Diamond	0.147				
Earth (dry and packed)			1.5 (loose)	32	0.035
				100	0.039
Felt				86	0.022
Fireclay brick	0.198	212			
Fluorspar	0.21	86			
Glass (crown)	0.16-0.2		2.4-2.7		0.333-0.5
(flint)	0.117		3.2-4.7		
(pyrex)	0.20				
(silicate)	0.188-0.2	32-212			
(wool)	0.157				
(common)			2.40-2.80		
Graphite (powder)	0.165	78.8-168.8		104	0.106
Graphite	0.20	68-212	2.4-2.7		1.0-2.32
Gypsum	0.259	60.8-114.8	2.3-2.8	68	0.25
German silver	0.0946	32-212	8.58		
Garnet	0.1758	60.8-212			
Gold	0.0308		19.25-19.2	64	169.0
ice	0.350	- 112	0.88-0.92	32	1.28 (water)
lce	0.434	- 40		14	1.35
lce	0.465	- 4		- 4	1.41
lce	0.487	32		2 2	1.471
				40	1.538
inala rubber (para)	0.481	- 148	1	1	P

Table 11 PROPERTIES OF SOLIDS

0.101

Iron (gray cast)

7.03-7.13

129

27.6

Table 11 (cont.) **PROPERTIES OF SOLIDS**

Numa_ar	Specific	Heat	Specific	Thermo	al Conductivity*
Description	Btu per (lb) (F deg)	Temp F	Gravity	Temp F	k
Iron (cast pig)			7.2		
Iron (wrought)			7.6-7.9	64	34.9
Lead	0.030		11.34	64	20.1
Limestone	0.217	59-212	2.1-2.8		0.3-0.75
Litharge	0.055				
Leather			0.86-1.02		0.092
Linen					0.05
Marble	0.21	64.4	2.4-2.8		1.2-1.7
Manganese			7.42		
Magnesia	0.234	212			0.04
Magnesite brick	0.222	212			0.9-2.5
Monel metal	0.127	68-2372	8.97		
Mica	0.10	68			0,44
Nickel	0.103		8.9	64	34.4
Nickel steel	0.109				
Paper	0.324		0.70-1.15		0.075
Paraffin	0.6939	32-68	0.87-0.91	86	0.145
Platinum (cast)			21.5	64	40.2
Porceloin	0.22			329	0.945
Pyrites (copper)	0.131	66.2-122			
Pyrites (iron)	0.136	59-208.4			
Plaster (rough lime)					0 25-0.05
Sawdust			0.21	68	0.042
Pork salt	0 210	55 4-113	0.21	00	0.042
Rubber (goods)	0.48		10.20	100	0.02
Soltneter	0.00		1.07	100	0.72
Sand	0 101		1.4.1.0	69	0.188
Silica	0.316		1.4-1.7	00	0.100
Stool (cold drawn)	0.12		7 83	22	28.0
Stone	0.72		7.05	52	20.0
Silver (cret)	0.2		10 4 10 4		244.0
Silver (cdsi)			10.4-10.0	04	244.0
Show (nesh ranen)	0.050		0.125		27.6
	0.033		7.2-7.5	04	37.8
Tongsten Ton (hitumintus)	0.034		19.22		
	0.570		1.20		0.005.0.105
	0.370		0.05-0.84		0.085-0.125
most woods vary between	0.45-0.65		0.000		
Asn	0.75		0.55-0.71		
Fir Fi	0.05		0.40	86	0.094
Elm			0.56		
nickory			0./4-0.80		
Mahogany	1		0.56-0.85		
Maple			0.53-0.68	86	0.092
Pine	0.67		0.43-0.67	86	0.065-0.085
Spruce			0.45	1	
Walnut		1	0.59		
Wool			1.32	86	O.022
Zinc (cast)			7.1	32	63.0

*Note: k = BTU per (hr.) (sq. ft.) (F deg per ft). Specific Gravity = Ratio of density (pounds per cubic foot) to that of water (62.4 pounds per cubic foot)

From 1967 ASHRAE Handbook of Fundamentals, Reprinted by Permission

Name or	Boiling	En- thalpy of	Spec	ific Heat	Visco	sity	Freezing	En- thalpy	Spe or I	cific Gravity Density (d)	Therm Conducti	al vity*
Description	Point F	Vapor- ization Btu/lb	Btuper (Ib) (Fdeg)	Temp. F	Centi- poises	Temp. F	Point F	of Fusion Btu/lb	Temp. F	lb/cu ft d	k	Temp. F
Acetaldehyde	69.44	244.8			0.275	32						
Acetic acid	245.3	173.0	0.522	78.8-203	1.040	86	62.00	77.7			0.099	68
Acetone	132.98	223.0	0.506	32			203	42.1	68	49.4 (d)	0.102	77-86
Ally! alcohol	200.0	293.0	0.000	09.8-204.8	1.108	08	-200.2	48.0			0.104	77-86
Amyr ulcollol Ammonia	200.22	210.0	1 099	32			-107.3	04 5		1	0.094	5.86
Alcohol-ethyl	172.94	366.9	0.548	ō	1.2	68	-174.28	45.6			0.789	0-00
Alcohol-methył	148.46	472.0	0.601	64	0.596	68	-142.6	39.6			0.796	
Aniline	63.2	198.0	0.514	60	4.467	68	+ 20.77	48.6	32	64.5(d)		
Benzol			0.340	50	0.567	86		55.0				
Benzene	176.18	167.0	0.107	12.46	0.011			54.6	32	56.1 (d)	0.092	86
Bromine Butul alashal	242 94	86.4	0.107	13-45	0.911	86	120.44	29.15	32		0.007	
Butyric acid	326.3	205.0	0.007	20-100	1304	86	129.04	54.0			0.097	80
Calcium chloride brine	020.0	100.0	0.764	5	1.004	00	- 11.01	34.2	5	1.14		
			0.787	68				[68	1.14	30% 0.32	86
			0.695	+4					+4	1.20	15% 0.34	86
			0.725	68					68	1.20		
			0.651	-4]		-4	1.26	1	
Curbalia anti	250.06	1	0.070	57 2 79 9				52.2	68	1.26		ļ
Carbon disulfide	115 27	151 3	0.301	88	0352	86	_140.24	52.2	32	80.6(d)	0.003	04
Carbon tetrachloride	169.16	83.5	0.201	68	0.848	86	- 9.04	74.8		00.0(0)	0.107	32
Chloroform	142.16	106.0	0.226	59	0.519	86	- 82.3			1.50	0.080	86
Copper sulfate			0.848	58								
			0.951	57				ĺ				
	c75 /		0.975	59			107.04		!			
Diphenylamine	5/5.6	100 2	0.464	125	0.77	72.14	127.36	044			0.005	
Decane Dow Corning 500	211.1	100.2	0.500	0-50	0.77	72.14	- 11	00.4			0.085	80
Dow Coming Sev	305.6											
	377.6											
	446.0										1	
Ethyl ether	94.08	159.0	0.529	32	0.223	86	176.8	41.4		0.736	0.08	86
Ethyl acetate	170.78	183.5	0.475	68			-118.84	51.1	1		0.101	68
Ethyl alcohol	172 04	367 0	0.548	33				44.9			0.105	4.0
Ethyl bromide	101.12	108.0	0.215	59-68	0.368	86	-182.2	44.0			0.105	00
Ethyl chloride	53.96	166.5	0.367	32	0.000		-217.66					
Ethyl iodide	161.78	81.3	0.161	68	0.540	86	-163.3				0.064	104
Ethylene bromide	269.06	83.0	0.173	68	1.475	86	50.108					
Ethylene chloride	182.66	139.0	0.299	68	0.736	86	31					
Ethylene glycol	386.6	344.0	0.525	40 010	1.47		17.10				0.153	32
Civerine	554	210.0	0.525	50-120	930.0	80	47.12	05.4				
Giverol	555.08		0.373	57-120	207.0	68	64.4	85.5			0.164	68
Gasoline	158-194		0.5	32-212						0.73	0	
Heptane	209.12	137.1	0.490	68	0.375	86		60.6			0.081	86
Hexane	755.6	142.5	0.600	68	0.296	86	1 39	65.0			0.080	86
Isobutyl alcohol	224.42	248.0										
Kerosine			0.5	32-212	22.1	0.4				0.78-0.82	0.086	68
Methyl acetate	134.78	176.5	0.468	59	33.1	00	144 49			0.925		
Methyl iodide	108.14	82.6	0.100	07	0.460	86	- 86.98					
Naphthalene	424.4	136.0	0.396	185			176.396	64.0				
Nitrobenzole			0.350	58								
Nitric acid	186.8						43.6	17.15		91%1.50		
Nitrobenzene	411.62	142.2	0.350	57.2	0.40	70.14	42.53	40.5			0.095	86
Oils	302		0.503	32-122	0.62	72.14	64.66				0.084	86
Castor			0.434		451.0	86			50	60 5 (4)	0.104	69
Citron			0.438	42	+01.9				37	00.0(0)	0.104	00
Olive			0.471	44	54.0	86			59	0.906	0.097	68
Sesame			0.387									
Rapeseed					42.2	100.04			59	57.0 (d)		
Sperm					40.6	86		ĺ	194	0.919		
ala et un		I İ		1	72.0	00.08			· /	33.0(a)		

Tabl	e 12	2
PROPERTIES	OF	LIQUIDS

Name or	lame or Boiling of Specific Heat Viscosity		ity	Freezing	En- thalpy	Specific Gravity or Density (d)		Thermal Conductivity*				
Description	Point F	Vapor- ization Btu/lb	Btu per (ib) (F deg)	Temp. F	Centi- poises	Temp. F	Point F	of Fusion Btu/lb	Temp. F	lb/cu ft d	k	Temp. F
Octane	256.28	127.5	0.587	68-253.4	0.483	86	- 70.42				0.083	86
Petroleum			0.511	70-135						0.87		
Pentane	96.8				0.220	86	- 201.82	1	32	40.6 (d)		
Propionic acid	285.98	177.8	0.560	68-278.6	0.960	86	- 5.44					
Propyl alcohol	207.5	295.2	0.57	68	1.779	86	- 194.98		1	2.04		
Potassium hydroxide												
\pm 30 parts H ₂ O	1		0.876	64					1			
+100 parts H.O			0.975	64					1			
Sea water	1		0.980	{ }						1.004		
			0.938							1.024		
			0.903							1.046		
Sulfuric acid 100 %	626	219.6	0.344	68			50.882	43.2		87%1.80	0.21	86
Sodium chloride brine				!					}			
+10 parts H ₂ O			0.791	64					1	25%-0.33		86
+ 200 parts H.O	1		0.978	64					1	13%-0.34		86
Sodium hydroxide			0.942	64								
+100 parts H.20			0.983	64		ļ		1				
Toluol	231.8	154.8	0.364	50					1			
		1	0.534	185								
Toluene	230.54	155.7	0.440	53.6-210.2	0.525	86	139					
Turpentine	320	123.4	0.411	32	1.272	86				0.864	0.074	59
Water	212	969.7	1.000	60.8	0.8007	86	32	143.05	39.2	1.00	0.330	32
									39.2	62.4 (d)	0.356	86
Xylene	287.6	149.2	0.411	86			- 16.78		1		0.090	68
Linc sultate									1			
+50 parts H ₂ O			0.842	68-125			1	1	1			1
+ 200 parts H ₂ O			0.952	125								

Table 12 (cont.) **PROPERTIES OF LIQUIDS**

*Note: k == BTU per (hr.) (sq. ft.) (F deg. per ft.)

Density = Pounds per cubic foot

Specific Gravity = Ratio of density to that of water (62.4 pounds per cubic foot)

From 1967 ASHRAE Handbook of Fundamentals, Reprinted by Permission

SENSIBLE HEAT ABOVE FREEZING

Most products are at a higher temperature than the storage temperature when placed in a refrigerator. Since many foods have a high percentage of water content, their reaction to a loss of heat is guite different above and below the freezing point. Above the freezing point, the water exists in liquid form, while below the freezing point, the water has changed its state to ice.

As mentioned previously, the specific heat of a product is defined as the BTUs required to raise the temperature of one pound of the substance 1°F. The specific heats of various commodities are listed in Tables 10, 11, and 12. Note that in Table 10 the specific heat of the product above freezing is different than the specific heat below freezing, and the freezing point (listed in the first column) varies, but in practically all cases is below 32°F.

The heat to be removed from a product to reduce its

temperature above freezing may be calculated as follows:

$$Q = W \times c \times (T_1 - T_2)$$

Q = BTU to be removed

- W = Weight of the product in pounds
- c = Specific heat above freezing
- T_1 = Initial temperature, °F. T_2 = Initial temperature, °F. (freezing or above)

For example, the heat to be removed in order to cool 1,000 pounds of veal (whose freezing point is 29°F.) from 42°F. to 29°F. can be calculated as follows:

$$Q = W x c x (T_1 - T_2)$$

= 1000 pounds x .71 specific heat

- $= 1000 \times .71 \times 13$
- = 9,230 BTU

x (42-29)

LATENT HEAT OF FREEZING

The latent heat of fusion or freezing for liquids other than water is given in Table 12. Substances such as metals which contain no water do not have a freezing point, and no latent heat of fusion is involved in lowering their temperature.

Most food products, however, have a high percentage of water content. In order to calculate the heat removal required to freeze the product, only the water need be considered. The water content percentage for various food products is given in Table 10, Column 2.

Since the latent heat of fusion or freezing of water is 144 BTU/lb., the latent heat of fusion for the product can be calculated by multiplying 144 BTU/lb. by the percentage of water content, and for ease in calculations this figure is given in Column 5 of Table 10. To illustrate, veal has a water percentage of 63%, and the latent heat of fusion listed in Column 5 for yeal is 91 BTU/lb.

63% x 144 BTU/lb. = 91 BTU/lb.

The heat to be removed from a product for the latent heat of freezing may be calculated as follows:

 $Q = W \times h_{if}$

Q = BTU to be removed

- W = Weight of product in pounds
- h_. = latent heat of fusion, BTU/lb.

The latent heat of freezing of 1000 pounds of veal at 29°F. is:

SENSIBLE HEAT BELOW FREEZING

Once the water content of a product has been frozen, sensible cooling again can occur in the same manner as that above freezing, with the exception that the ice in the product causes the specific heat to change. Note in Table 10 the specific heat of veal above freezing is .71, while the specific heat below freezing is .39,

The heat to be removed from a product to reduce its temperature below freezing may be calculated as follow:

$$Q = W \times c_i \times (T_f - T_3)$$

Q = BTU to be removed

- W = Weight of product in pounds
- $\begin{array}{c} \mathbf{C}_{i} \\ \mathbf{T}_{f} \\ \mathbf{T}_{3}^{f} \end{array}$ = Specific heat below freezing
- = Freezing temperature
- = Final temperature

For example, the heat to be removed in order to cool 1,000 pounds of veal from 29°F. to 0°F. can be calculated as follows:

Q = W x c_i x (T_f - T₃) = 1,000 lbs. x .39 specific heat x (29-0) = 1,000 x .39 x 29 = 11,310 BTU

TOTAL PRODUCT LOAD

The total product load is the sum of the individual calculations for the sensible heat above freezing, the latent heat of freezing, and the sensible heat below freezing.

From the foregoing example, if 1,000 pounds of veal is to be cooled from 42°F. to 0°F., the total would be:

Sensible Heat above Freezing	9,230	BTU
Latent Heat of Freezing	91,000	BTU
Sensible Heat Below Freezing	<u>11,310</u>	BTU
Total Product Load	111,540	BTU

If several different commodities or crates, baskets, etc. are to be considered, then a separate calculation must be made for each item for an accurate estimate of the product load.

STORAGE DATA

Most commodities have conditions of temperature and relative humidity at which their quality is best preserved and their storage life is a maximum. Recommended storage conditions for various perishable products are listed in Table 13 and recommended storage conditions for cut flowers and nursery stock are listed in Table 14.

Data on various types of storage containers is listed in Table 15.

Table 13

STORAGE REQUIREMENTS AND PROPERTIES OF PERISHABLE PRODUCTS

Commodity	Storage Temp. F	Relative Humidity %	Approximate Storage Life	Commodity	Storage Temp. F	Relative Humidity %	Approximate Storage Life
Apples	30-32	85-90	2-6 months	Endive (escarole)	32	90-95	2- 3 weeks
Apricots	31-32	85-90	1-2 weeks	Figs			
Artichokes (Globe)	31-32	90-95	1 - 2 weeks	Dried	32-40	50-60	9-12 months
Jerusalem	31-32	90-95	2-5 months	Fresh	28-32	85-90	5- / days
Asparagus	32	90-95	2-3 weeks				
Avocados	45-55	85-90	4 weeks	rish	00.05	00.05	C 1 C 1
		25.05		Fresh	33-35	90-93	0-10 days
Bananas		85-95	0.10	frozen		90-93	8-10 months
Beans (Green or snap)	45	85-90	8-10 days	Smoked	40-50	50-60	0- 6 months
Lima	32-40	80-90	10-15 days	brine salled	20.25	90-93	
Beer, barrelled	35-40		3-10 weeks	Mild Cured	28.35	75-90	4- 6 months
Beets		00.05	10.14	Sneifisn	22	00.05	2 7 1-00
Bunch	32	90-95	10-14 ddys	Fresh	0 1- 20	90-95	2 9 months
lopped	32	90-95	i- 3 months	rrozen	0 10 - 20	90-93	3- a months
Plashbarria	21 22	95.00	7 days				(10
Blackberries	21 22	85.00	7 duys	Frozen-pack fruits	-10.0	—	6-12 months
Broed	31 32	03-70	J- U weeks	Frozen-pack vegetables	-10-0		0-12 months
Bread Breaking	22	00.05	7 10 days	Furs and Fabrics	34-40	45-55	several years
Bruccols, sprouts	32	90.95	3. d weeks		i		
Bibssels spicols	52	,0.,3	J- 4 HEEKS	Garlic, dry	32	70-75	6-8 months
Cabhaga Igta	37	00.95	3. 4 months	Gooseberries	31-32	80-85	3-4 weeks
Capdy	0.34	40-65		Grapefruit	50	85-90	4-8 weeks
Corrate	0-04	40-03		Grapes			
Prenackaged	32	80.90	3. 4 weeks	American type	31-32	85-90	3-8 weeks
Topped	32	90-95	4. 5 months	European type	30-31	85-90	3-6 months
Topped		,,,,,	4 0 11011113				
Cauliflower	37	90.95	2. 3 weeks	Honey			l year, plus
Celering	32	90-95	3- 4 months	Hops	29-32	50-60	several months
Celery	31-32	90-95	2-4 months	Horseradish	32	90-95	10-12 weeks
Cherries	31-32	85-90	10-14 days	Kale	32	90-95	2-3 weeks
Coconuts	32-35	80-85	1-2 months	Kohirabi	32	90-95	2-4 weeks
Coffee (areen)	35-37	80-85	2-4 months	Lard (without antioxidant)	45	90-95	4-8 months
Corn, sweet	31-32	85-90	4 - 8 days	Lard (without antioxidant)	0	90-95	12-14 months
Cranberries	36-40	85-90	1-4 months	Leeks, green	32	90-95	1-3 months
Cucumbers	45-50	90-95	10-14 days	Lemons	32 or 50-58	85-90	1-4 months
Currants	32	80-85	10-14 days	Lettuce	32	90-95	3-4 weeks
Dairy products				Limes	48-50	85-90	6-8 weeks
Cheese	30-45	65-70		Logan blackberries	31-32	85.90	5- 7 days
Butter	32-40	80-85	2 months	Meat		ļ	
Butter	0 to —10	80-85	1 year	Bacon—Frozen	10-0	90-95	4-6 months
Cream (sweetened)	- 15		several months	Cured (Farm style)	60-65	85	4-6 months
lce cream	- 15		several months	Cured (Packer style	34-40	85	2-6 weeks
				Beef—Fresh	32-34	88-92	1 - 6 weeks
Milk, fluid whole		-		Frozen	10-0	90-95	9-12 months
rasteurized Grade A	33		/ days				
Condensed, sweetened Evenerated	40 Room Tom-		several months	Fat backs	34-36	85-90	0-3 months
Evaporatea	koom lemp		i year, plus	Hams and shoulders—Fresh	32-34	85-90	7-12 days
Whole milk	15 55	low	fow month-	Frozen	-10-0	90-95	6-8 months
Non fot	45.55	low		Cured	60-65	50-60	0-3 years
1401-141	40-00	100	several months	Lamb—Fresh	32-34	85-90	5-12 days
Dewberries	31.32	85.00	7.10 days	Frozen	-10-0	90-95	8-10 months
Dried fruite	31-32	50 60	9.12 months				
Ecoplant	45-50	85.00	10 days	LiversFrozen	10-0	90-95	3-4 months
299pian	40-00	00-70	10 0073	Pork-Fresh	32-34	85-90	3-7 days
Eggs				Frozen	10-0	90-95	4- 6 months
Shell	29-31	80-85	6. 9 months	Smoked Sausage	40-45	85-90	6 months
Shell, farm cooler	50-55	70-75		Sausage Casings	40-45	85-90	
Frozen, whole	0 or helow		1 year plus	Veal	32-34	90-95	5-10 days
Frozen, volk	0 or below		l year, plus	1			
Frozen, white	0 or below	_	1 year, plus	Manapes	50	85-90	2-3 weeks
			. ,, ,	Melons, Contaloupe	32-40	85-90	5-15 davs
Whole egg solids	35-40	low	6-12 months	Persian	45-50	85-90	1 - 2 weeks
Yolk solids	35-40	low	6-12 months	Honeydew and Honey Ball	45-50	85-90	2-4 weeks
Flake albumen solids	Room Temp	low	l year, plus	Casaba	45-50	85-90	4- 6 weeks
Dried spray olbumen solids	Room Temp	low	l year, plus	Watermelons	36-40	85-90	2-3 weeks
		1	, , , , , , , , , , , , , , , , , , , ,	4	L	1	1

Table 13 (cont.)

STORAGE REQUIREMENTS AND PROPERTIES OF PERISHABLE PRODUCTS

Commodity	Storage Temp. F	Relative Humidity %	Approximate Storage Life	Commodity	Storage Temp. F	Relative Humidity %	Approximate Storage Life
Mushrooms	32-35	85-90	3-5 days	Poultry			
Mushroom spawn				Fresh	32	85-90	1 week
Manure spawn	34	75-80	8 months	Frozen, eviscerated	- 20-0	90-95	9–10 months
Grain spawn	32-40	75-80	2 weeks	Pumpkins	50-55	70-75	2 - 6 months
Nursery stock	32-35	85-90	3– 6 months	Quinces Radishes—Spring, bunched or	3132	85-90	2–3 months
Nuts	32-50	65-75	8-12 months	prepackaged	32	90-95	10 days
Oil (venetable salad)	35		1 veor	Winter	32	90-95	2 - 4 months
Okra	50	85-95	7-10 days				
Oleomargarine	35	60-70	l year	Rabbits		00.05	
g			,	Fresh	32-34	90-95	I- 5 days
				Frozen		90-95	0-6 months
Olives, fresh	45-50	85-90	4- 6 weeks	Raspberries		0.5.00	7 1
Onions and onion sets	32	/0-/5	6-8 months	Black	31-32	85-90	
Oranges	32-34	85-90	8-12 weeks	Red	31-32	85-90	/ days
Orange juice, chilled	30-35	0.000	3- 0 weeks	frozen (red or black)	- 10-0		ryear
Papayas	45	85-90	Z- 3 weeks	Rhubarh	32	90-95	2- 3 weeks
				Rutabaas	32	90-95	2- 4 months
Parsnips	32	90-95	2-6 months	Salsify	32	90-95	2-4 months
Peaches and nectarines	31-32	85-90	2-4 weeks	Spingch	32	90-95	10-14 days
Pears	29-31	85-90	Million .				
Peas, green	32	85-90	1-2 weeks	Squash			
Peppers, Sweet	45-50	85-90	8-10 days	Acorn	45-50	75-85	5-8 weeks
				Summer	32-40	85-95	10-14 days
Bannana Chili (dau)	22.40	45 75	6 0 months	Winter	50-55	70-75	4- 6 months
Peppers, Chini (dry)	32-40	95.00	2 menths	Strawberries			
Personnons	30	03.70	2 11011115	Fresh	31-32	85-90	7-10 days
Mature arean	50.60	95.00	3 d wooks	Frozen			1 year
Pian	40.45	85.00	2 A wooks	Sweet Potatoes	55-60	90-95	4- 6 months
кіре	40-45	0.5-90	Z- 4 weeks	Tangerines	31-38	90-95	3-4 weeks
Plums, including fresh prunes	31-32	80-85	3-4 weeks	Tomatoes			
Pomegranates	34-35	85-90	2 - 4 months	Mature green	57-70	85-90	2-4 weeks
Popcorn, unpopped	32-40	8.5		Firm ripe	45-50	85-90	2- 7 days
Potatoes	1			Turnips, roots	32	90-95	4- 5 months
Early crop	50-55	85-90		Vegetable seed	32-50	50-65	
Late crop	38-50	85-90	—	Yeast, compressed baker's	31-32	—	

From 1966-1967 ASHRAE Guide & Data Book, Reprinted by Permission

Commodity	Storage Temperature, F	Relative Humidity, %	Approximate Storage Life	Method of Holding	Highest Freezing Point, F
CUT FLOWERS:					
Calla lilly	40	80-85	1 week	Dry pack	
Camellia	45	80-85	3-6 days	Dry pack	30.6
Carnation	31	80-85	1 month	Dry pack	30.8
Chrysanthemum	31	80-85	2-5 weeks	Dry pack	30.5
Daffodil	31	80-85	1-2 weeks	Dry pack	_
Gardenia	31	80-85	2-3 weeks	Dry pack	31.0
Gladiolus	35	80-85	1 week	Dry pack	31.4
Iris, tight buds	31	80-85	2 weeks	Dry pack	30.6
Lily Easter	31	80-85	2 weeks	Dry pack	31.1
Lily-of-the-Valley	31	80-85	2-3 weeks	Dry pack	
Orchid	45-55	80-85	2-3 days	Water	31.4
Peony, tight buds	31	80-85	6 weeks	Dry pack	30.1
Rose, tight buds	31	80-85	2 weeks	Dry pack	31.2
Sweet pegs	31	80-85	2 weeks	Dry pack	30.4
Tulips	31	80-85	6-8 weeks	Dry pack	_
GREENS:					
Fern, dagger and wood	31	85-90	4-5 months	Dry pack	28.9
Holly	31	85-90	1-4 weeks	Dry pack	27.0
Huckleberry	31	85-90	1-4 weeks	Dry pack	26.7
Laurel	31	85-90	1-4 weeks	Dry pack	27.6
Magnolia	31	85-90	1-4 weeks	Dry pack	27.0
Rhododendron	31	85-90	1-4 weeks	Dry pack	27.6
Satal	31	85-90	1-4 weeks	Dry pack	26.8
BULBS					
Amaryllis	70-75	75-80	5 months	Dry	30.8
Dahlia	40-45	75-80	5 months	Dry	28.7
Gladiolus	40-45	75-80	8 months	Dry	28.2
Iris, Dutch, Spanish	75-80	75-80	4 months	Dry	_
Lily					
Candidum	31	75-80	3 months	Poly liner & peat	
Croft	31	75-80	2 months	Poly liner & peat	
Longiflorum	31	75-80	3 months	Poly liner & peat	28.9
Speciosum	31	75-80	3 months	Poly liner & peat	
Peony	40-45	75-80	5 months	Dry	-
Tuberose	40-45	75-80	4 months	Dry	
Tulip	40-45	75-80	1-2 months	Dry	27.6
NURSERY STOCK:					
Trees and Shrubs	32-35	80-85	4-5 months		_
Rose bushes	32-35	85-95	4-5 months	Bare rooted with poly liner	-
Strawberry Plants	30-32	80-85	4–10 months	Bare rooted with poly liner	29.9
Rooted Cuttings	33-40	85-95		Poly wrap	
Herbaceous Perennials	27-28 or 33-35	80-85	-		

 Table 14

 STORAGE CONDITIONS FOR CUT FLOWERS AND NURSERY STOCK

From 1966-1967 ASHRAE Guide & Data Book, Reprinted by Permission

Table 15

SPACE, WEIGHT, AND DENSITY DATA FOR COMMODITIES STORED IN REFRIGERATED WAREHOUSES

Commodity	Type of Package	Outside Dimensions of Package, In.	Avg. Gross Wt. of Pkg., Lb.	Avg. Net Wt.of Mdse., Lb.	Avg. Gross Wt. Density, Ib. per Cu. Ft.	Avg. Net Wt. Density, Lb. per Cu. Ft.
Apples	Wood Box Northwestern Fiber Tray Carton Fiber Master Carton Fiber Bulk Carton Pallet Box	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50 46 ³ / ₄ 44 ³ / ₄ 44 ³ / ₄ 1030	42 43 41 41 900	33.1 23.8 21.2 25.0 26.9	27.8 21.9 19.4 22.9 23.5
Beef Boneless Fores Hinds Celery Cheese Cheese, Swiss Chili Peppers	Fiber Carton Loose Virebound Crates Fiber Carton Hoops Wood, Export Wheels Bags	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	146 	140 55 32 78 76 171 229	83.4 	80.0 22.2 30.0 31.4 40.5 32.5 40.0 16.1
Citrus Fruits Oranges California Oranges Florida Oranges Lemons Grapefruit Coconut, Shredded	Box Bruce Box Pallet, 40 Cartons Fiber Carton Fiber Carton Fiber Carton Fiber Carton Bags	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	77 88 1690 40 45 40 40 101	69 83 1480 37 37 37 38 100	31.5 40.5 26.0 38.0 41.3 40.0 36.7 31.0	28.3 38.2 22.8 35.2 33.9 37.0 34.9 30.7
Cranberries Cream Dried Fruit Dates Raisins, prunes, figs, peaches Eggs, Shell Eggs, Frozen	Fiber Carton Tins Wood Box Fiber Carton Fiber Carton Wood Cases Cans	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26 52 ¾ 26 ½ 32 32 55 32	24 50 25 30 30 45 30	24.1 45.2 45.4 25.7 47.9 23.4 44.2	22.2 42.9 42.9 24.0 44.9 19.1 41.5
Frozen Fishery Products Blocks Fillets Fish Sticks Panned Fish Portions	4/13 1/2 lb. Carton 4/16 1/2 lb. Carton 12/16 oz. Carton 10/5 lb. Carton 5/10 lb. Carton 12/8 oz. Carton 24/8 oz. Carton None, Glazed 2, 3, 5, and 6 lb.	20 $\frac{3}{4}$ X 12 $\frac{1}{8}$ X 6 $\frac{3}{4}$ 19 $\frac{3}{4}$ X 10 $\frac{3}{4}$ X 11 $\frac{1}{4}$ 12 $\frac{3}{4}$ X 8 $\frac{5}{6}$ X 3 $\frac{13}{6}$ 14 $\frac{1}{2}$ X 10 X 14 14 $\frac{1}{2}$ X 10 X 14 11 X 8 $\frac{3}{6}$ X 3 $\frac{7}{6}$ 16 $\frac{7}{6}$ X 8 $\frac{5}{6}$ X 4 $\frac{5}{6}$ Wooden Boxes Custom Packing	56 68 13.5 52.25 52.2 6.9 13.8 —	54 66 12 50 50 6 12	57.0 49.2 55.8 44.6 44.5 33.6 37.8 —	55.0 47.8 49.6 42.7 42.7 29.3 32.9 35.0
Round Ground Fish Round Halibut Round Salmon Shrimp Steaks	None, Glazed None, Glazed None, Glazed 2 ½ and 5 lb. Cartons 1, 5, or 10 lb. Packages	Stacked Loose Wooden Box, Loose Stacked Loose Stacked Loose Custom Packing Custom Packing				29-33 33-35 30-35 38.0 33-35 35.0 50-60
Frozen Fruits, Juices & Vegetables Asparagus Beans, Green Blueberries Broccoli Citrus Concentrates Peaches	24/12 oz. Carton 36/10 oz. Carton 24/12 oz. Carton 24/10 oz. Carton Fiber Carton 48/6 oz. 24/1 lb. Carton	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21 25 ½ 20 18 ½ 27 27	18 22 ½ 18 15 26 24	27.7 40.1 31.3 26.2 54.7 41.0	23.8 35.3 28.2 21.2 52.7 36.4

Table 15 (cont.)

SPACE, WEIGHT, AND DENSITY DATA FOR COMMODITIES STORED IN REFRIGERATED WAREHOUSES

Commodity	Type of Package	Outside Dimensions of Package, In.	Avg. Gross Wt. of Pkg., Lb.	Avg. Net Wt. of Mdse., Lb.	Avg. Gross Wt. Density, Lb. per Cu. Ft.	Avg. Net Wt. Density, Lb. per Cu. Ft.
Peas	6/5 lb. Carton	17 X 11 X 9 ½	32	30	31.1	28.2
Potatoes, Fr. Fries	48/12 oz. Carton 12/16 oz. Carton	21 ½ X 8½ X 12½	38	36	28.7	27.2 28.6
Spinneh	24/9 oz. Carton	101/ X 11 X 01/				24.0
Strawberries	30 lb. Can	$12\frac{7}{2}$ X 10 X 10	32	30	35.5 44.2	41.5
	24/1 lb. Carton	13 X 11 X 8	28	24	42.3	36.2
	430 lb. Barrei	35 X 25 X 25		450		35.5
Grapes, California	Wood Lug Box	6½ X 15 X 18	31	28	32.4	29.2
Lamb, Boneless	Fiber Box Wood Export Box	20 X 15 X 5	57	53	65.7	61.0
Lettuce, head	Fiber Carton	$20\frac{1}{2} \times 13\frac{1}{2} \times 9\frac{1}{2}$	371/2	35	24.7	J2,J
	Fiber Carton	21 1/2 X 14 1/4 X 10 1/2	45-55	42-52	26.9	25.2
Milk, Condensed	Barrels	$\frac{42}{35} \times \frac{50}{25} \times \frac{80}{25} \times \frac{100}{25}$	670	600	50.9	45.6
Nuts Almonds, in Shell	Sacks	24 X 15 X 33	91 1/2	90	13.3	13.1
Almonds, Shelled	Cases	6 3/4 X 23 1/2 X 11	32	28	31.7	27.7
English Walnuts, in Shell English Walnuts, Shellad	Sacks Fiber Contan	25 X 11 X 31	103	100	20.9	20.3
Peanuts, Shelled	Burlap Bag	35 X 10 X 15	127	125	39.2	38.6
Pecans, in Shell	Burlap Bag	35 X 22 X 12	1261/2	125	23.7	23.4
Pecans, Shelled	Fiber Carton	13 X 13 X 11	32	30	29.8	27.9
Peaches	3⁄4 Bushel Baskets	16% top dia.	41	38	43.9	40.7
	1/2 Bushel Baskets Wirebound Crate	14½ top dia.	28	25	45.0	40.2
	Wood Lug Box	18 1/8 X 11 1/2 X 5 3/4	26	23	38.0	33.1
Pears place pack	Wood Box	8 1/2 X 11 1/2 X 18	52 52	48	51.0	47.1
redis, place pack	The carton	10 /2 X 12 X 10	52	40	40.5	33.0
Pork	Bundley	221/ X 101/ X 7	67	57	57.0	67.0
Loins (Regular)	Wood Box	23 /2 X 10 /2 X 7 28 X 10 X 10	60	54	37.0	33.3
Loins (Boneless)	Fiber Box	20 X 15 X 5	57	52	65.7	59.9
Potatoes	Sack	33 X 17 ½ X 11	101	100	27.5	27.2
Pouitry, Fresh (Eviscerated)						
Fryers, Whole, 24-30 to Pkg. Fryer Parts	Wirebound Crate Wirebound Crate	24 X 10 X 7 1734 X 10 X 1216	65 54	60 50	27.5 42 1	25.4
Poultry, Frozen (Eviscerated)		74 74 10 74 12 72	÷.	20	12.1	0017
Ducks, 6 to Pkg. Fowl 6 to Pkg	Fiber Carton Eiber Carton	22 X16 X 4 203/ X18 X 51/4	321/2	31	39.9	38.0
Fryers, cut up, 12 to Pkg.	Fiber Carton	$17\frac{1}{4} \times 15\frac{3}{4} \times 4\frac{1}{4}$	30 1/2	28	45.4	41.7
Roaster, 8 to Pkg.	Fiber Carton	203/4 X 18 X 51/2	32 1/2	30	27.3	25.2
3-6 lb., 6 to Pkg.	Fiber Carton	21 X 17 X 6 1/2	30	27	22.5	20.1
6-10 lb., 6 to Pkg.	Fiber Carton	26 X 21 ½ X 7	52 1/2	48	23.3	21.2
10-13 15., 4 to Pkg. 13-16 lb 4 to Pkg	Fiber Carton	$26 \frac{1}{2} \times 16 \times \frac{1}{2}$ 29 × 18 ¹ / ₂ × 9	50 67 %	46 62	27.2	25.0
16-20 lb., 2 to Pkg.	Fiber Carton	17 X 16 X 9	39	36	27.7	25.4
20-24 lb., 2 to Pkg.	Fiber Carton	19 X 16 ½ X 9 ½	47 1/2	44	27.6	25.5
Tomatoes						
Florida	Fiber Carton	19 X 10 % X 10 %	43	40	33.3	31.0
California	Wood Lug Box	17 1/2 X 14 X 7 3/4	34	30	30.9	27.3
Texas	Wood Lug Box	171/2 X 14 X 6 5/8	34	30	36.2	31.9
vear (poneless)	riber Carton	20 213 2 3	2/	53	05./	01.0

From 1966-1967 ASHRAE Guide & Data Book, Reprinted by Permission

SECTION 15 SUPPLEMENTARY LOAD

In addition to the heat transmitted into the refrigerated space through the walls, air infiltration, and product load, any heat gain from other sources must be included in the total cooling load estimate.

ELECTRIC LIGHTS AND HEATERS

Any electric energy directly dissipated in the refrigerated space such as lights, heaters, etc. is converted to heat and must be included in the heat load. One watt hour equals 3.41 BTU, and this conversion ratio is accurate for any amount of electric power.

ELECTRIC MOTORS

Since energy cannot be destroyed, and can only be changed to a different form, any electrical energy transmitted to motors inside a refrigerated space must undergo a transformation. Any motor losses due to friction and inefficiency are immediately changed to heat energy. That portion of the electrical energy converted into useful work, for example in driving a fan or pump, exists only briefly as mechanical energy, is transferred to the fluid medium in the form of increased velocity, and as the fluid loses its velocity due to friction, eventually becomes entirely converted into heat energy.

A common misunderstanding is the belief that no heat is transmitted into the refrigerated space if an electric motor is located outside the space, and a fan inside the space is driven by means of a shaft. All of the electrical energy converted to mechanical energy actually becomes a part of the load in the refrigerated space.

Because the motor efficiency varies with size, the heat load per horsepower as shown in Table 16 has different values for varying size motors. While the values in the table represent useful approximations, the actual electric power input in watts is the only accurate measure of the energy input.

HUMAN HEAT LOAD

People give off heat and moisture, and the resulting refrigeration load will vary depending on the duration of occupancy of the refrigerated space, temperature, type of work, and other factors. Table 17 lists the average head load due to occupancy, but stays of short duration, the heat gain will be somewhat higher.

TOTAL SUPPLEMENTARY LOAD

The total supplementary load is the sum of the individual factors contributing to it. For example, the total supplementary load in a refrigerated storeroom maintained at 0°F. in which there are 300 watts of electric lights, a 3 HP motor driving a fan, and 2 people working continuously would be as follows:

300 Watts x 3.41 BTU/hr.	1,023	BTU/hr.
3 HP motor x 2,950 BTU/hr.	8,850	BTU/hr.
2 people x 1300 BTU/hr.	2,600	BTU/hr.
Total Supplementary Load	12,473	BTU/hr.

Table 16					
HEAT	EQUIVALENT	OF	ELECTRIC	MOTORS	

Motor hp	Btu per (hp) (hr)					
	Connected load in refr space ¹	Motor losses outside refr space ²	Connected load outside refr space ³			
1/8 to 1/2 1/2 to 3 3 to 20	4,250 3,700 2,950	2,545 2,545 2,545 2,545	1,700 1,150 400			

¹ For use when both useful output and motor losses are dissipated within refrigerated space; motors driving fans for forced circulation unit coolers.

² For use when motor losses are dissipated outside refrigerated space and useful work of motor is expended within refrigerated space; pump on a circulating brine or chilled water system, fan motor outside refrigerated space driving fan circulating air within refrigerated space.

³ For use when motor heat losses are dissipated within refrigerated space and useful work expended outside of refrigerated space; motor in refrigerated space driving pump or fan located outside of space. From 1967 ASHRAE Handbook of Fundamentals, Reprinted by Permission

Table 17 HEAT EQUIVALENT OF OCCUPANCY

Cooler Temperature F	Heat Equivalent/Person Btu/hr.
50	720
40	840
30	950
20	1,050
10	1,200
0	1,300
-10	1,400

From 1967 ASHRAE Handbook of Fundamentals, Reprinted by Permission

SECTION 16 EQUIPMENT SELECTION

Once the refrigeration load is determined, together with the required evaporating temperature and the expected condensing temperature, a compressor can be intelligently selected for a given application.

For refrigerated fixtures or prefabricated coolers and cold storage boxes to be produced in quantity, the load is normally determined by test. If the load must be estimated, the expected load should be calculated by determining the heat gain due to each of the factors contributing to the total load. Many short methods of estimating are commonly used for small refrigerated walk-in storage boxes with varying degrees of accuracy. A great deal of judgment must be used in the application of any method.

HOURLY LOAD

Refrigeration equipment is designed to function continuously, and normally the compressor operating time is determined by the requirements of the defrost system. The load is calculated on a 24 hour basis, and the required hourly compressor capacity is determined by dividing the 24 hour load by the desired hours of compressor operation during the 24 hour period. A reasonable safety factor must be provided to enable the unit to recover rapidly after a temperature rise, and to allow for loading heavier than the original estimate.

When the refrigerant evaporating temperature will not be below 30°F., frost will not accumulate on the evaporator, and no defrost period is necessary. It is general practice to choose the compressor for such applications on the basis of 18 to 20 hour operation.

For applications with storage temperatures of 35°F. or higher, and refrigerant temperatures low enough to cause frosting, it is common practice to defrost by stopping the compressor and allowing the return air to melt the ice from the coil. Compressors for such applications should be selected for 16 to 18 hour operation.

On low temperature applications, some positive means of defrost must be provided. With normal defrost periods, 18 hour compressor operation is usually acceptable, although some systems are designed for continuous operation except during the defrost period.

An additional 5% to 10% safety factor is often added to load calculations as a conservative measure to be sure the equipment will not be undersized. If data concerning the refrigeration load is very uncertain, this may be desirable, but in general the fact that the compressor is sized on the basis of 16 to 18 hour operation in itself provides a sizable safety factor. The load should be calculated on the basis of the peak demand at design conditions, and normally the design conditions are selected on the basis that they will occur no more that 1% of the hours during the summer months. If the load calculations are made reasonably accurately, and the equipment sized properly, an additional safety factor may actually result in the equipment being oversized during light load conditions, and can result in operating difficulties.

SAMPLE LOAD CALCULATION

The most accurate means of estimating a refrigeration load is by considering each factor separately. The following example will illustrate a typical selection procedure, although the load has been chosen to demonstrate the calculations required and does not represent a normal loading.

Walk-in cooler with 4 inches of glass fiber insulation, located in the shade.

Outside Dimensions, Height 8 ft., Width 10 ft., Length 40 ft., inside volume 3,000 cu. ft.

Floor area (outside dimensions) 400 sq. ft. on insulated slab in contact with ground.

Ambient temperature 100°F., 50% relative humidity

Ground temperature 55°F.

Refrigerator temperature 40°F.

1/2 HP fan motor running continuously

Two 100 watt lights, in use 12 hours per day.

Occupancy, 2 men for 2 hours per day.

In storage: 500 pounds of bacon at 50°F. 1000 pounds of string beans

Entering product:

500 pounds of bacon at 50°F. 15,000 pounds of beer at 80°F. To be reduced to storage temperature in 24 hours.

Heavy door usage.

(A) HEAT TRANSMISSION LOAD

Sidewalls: $40' \times 8' \times 2 = 640 \text{ Ft}^2 \times 60^\circ \text{TD} \times 1.9 \text{ (Table 7A)} = 72,960 \text{ BTU}$ $10' \times 8' \times 2 = 160 \text{ Ft}^2 \times 60^\circ \text{TD} \times 1.9 = 18,240$ Ceiling: $40' \times 10' = 400 \text{ Ft}^2 \times 60^\circ \text{TD} \times 1.9 = 45,600$ Floor: $40' \times 10' = 400 \text{ Ft}^2 \times 15^\circ \text{TD} \times 1.9 = 11,400$

Total 24 hour transmission load =148,200

(B) AIR INFILTRATION

3000 Ft ³ x 9.5 air changes	
(Table 8) x 2 usage factor x	
2.11 factor (Table 9)	120,270 BTU

(C) PRODUCT LOAD

	500 lbs. bacon x .50 sp. ht. (Table 10) x 10°TD	=	2,500	BTU
	15,000 lbs. beer x 1.0 sp. h (Table 10) x 40°TD	nt. = 60	00,000	BTU
	500 lbs. lettuce x 2700 BTU/24 Hr/Ton (Table 10)	=	675	BTU
ΒΤι	1,000 lbs. beans x 9700 J/24 Hr/Ton (Table 10) Total 24 hour Product Load	= I 60	<u>4,850</u> 08,025	<u>BTU</u> BTU

(D) SUPPLEMENTARY LOAD

200 Watts x 12 hours x 3.41 BTU/Hr	8,184 BTU
1/2 H.P. x 4250 BTU/Hr-Hr (Table 16) x 24	51,000 BTU
2 People x 2 Hrs/Day x 840 BTU/Hr (Table 17)	<u>3,360 BTU</u>
Total 24 hour Supplementary Load	62,544 BTU

(E) REQUIRED COMPRESSOR CAPACITY

24 Hour Load:

Heat Transmission	148,200 BTU
Air Infiltration	120,270
Product	608,025
Supplementary	62,544
Total 24 Hour Load	939,039 BTU

Required compressor capacity:

Based on 16 hour operation 58,690 BTU/Hr.

RELATIVE HUMIDITY AND EVAPORATOR TD

Relative humidity in a storage space is affected by many variables, such as system running time, moisture infiltration, condition and amount of product surface exposed, air motion, outside air conditions, type of system control, etc. Perishable products differ in their requirements for an optimum relative humidity for storage, and recommended storage conditions for various products are shown in Tables 13 and 14. Normally satisfactory control of relative humidity in a given application can be achieved by selecting the compressor and evaporator for the proper operating temperature difference or TD between the desired room temperature and the refrigerant evaporating temperature.

The following general recommendations have proven to be satisfactory in most normal applications:

	Desired	TD			
Temperature	Relative	(Refrigerant			
Range	Humidity	to Air)			
25°F. to 45°F.	90%	8°F. to 12°F.			
25°F. to 45°F.	85%	10°F. to 14°F.			
25°F. to 45°F.	80%	12°F. to 16°F.			
25°F. to 45°F.	75%	16°F. to 22°F.			
10°F. and below		15°F. or less			

COMPRESSOR SELECTION

In order to select a suitable compressor for a given application, not only the required compressor capacity must be known, but also the desired evaporating and condensing temperatures.

Assuming a desired relative humidity of 80%, a 14° TD might be used, which in a 40°F. storage room result in evaporating temperature of 26°F. To provide some safety factor for line losses, the compressor should be selected for the desired capacity at 2°F. to 3°F. below the desired evaporating temperature.

The condensing temperature depends on the type of condensing medium to be used, air or water, the design ambient temperature or water temperature, and the capacity of the condenser selected. Air cooled condensers are commonly selected to operate on temperature differences (TD) from 10°F. to 30°F. the lower TD normally being used for low temperature applications, and higher TDs for high temperature applications where the compression ratio is less critical. For the purposes of this example, a design TD of 20°F. has been selected, and in 100°F. ambient temperatures, this would result in a condensing temperature of 120°F.

COMPONENT BALANCING

Commercially available components seldom will exactly match the design requirements of a given system, and since system design is normally based on estimated peak loads, the system may often have to operate at conditions other than design conditions. More than one combination of components may meet the performance requirements, the efficiency of the system normally being dependent on the point at which the system reaches stabilized conditions or balances under operating conditions.

The capacities of each of the three major system components, the compressor, the condenser, and the evaporator, are each variable but interrelated. The compressor capacity varies with the evaporating and condensing temperatures. For illustration purposes an air cooled condenser will be considered, and for a given condenser with constant air flow, its capacity will vary with the temperature difference between the condensing temperature and the ambient temperature.

The factors involved in the variation in evaporator capacity are quite complex when both sensible heat transfer and condensation are involved. For component balancing purposes, the capacity of an evaporator where both latent and sensible heat transfer are involved (a wet coil) may be calculated as being proportional to the total heat content of the entering air, and this in turn is proportional to the wet bulb temperature. For wet coil conditions, evaporator capacities are normally available from coil manufacturers with ratings based on the wet bulb temperature of the air entering the coil. For conditions in which no condensation occurs (a dry coil) the evaporator capacity can be accurately estimated on the basis of the dry bulb temperature of the air entering the coil.

Some manufacturers of commercial and low temperature coils publish only ratings based on the temperature difference between entering dry bulb temperature and the evaporating refrigerant temperature. Although frost accumulation involving latent heat will occur, unless the latent load is unusually large, the dry bulb ratings may be used without appreciable error.

Because of the many variables involved, the calculation of system balance points is extremely complicated. A simple, accurate, and convenient method of forecasting system performance from readily available manufacturer's catalog data is the graphical construction of a component balancing chart. The following example illustrates the use of such a chart in checking the possible balance points of a system when selecting equipment. To illustrate the procedure, tentative selections of a compressor, condenser, and evaporator have been made for the sample load previously calculated.

Figure 69 shows the compressor capacity curves as published by Emerson Climate Technologies, Inc. on the Copeland® brand compressor specification sheet. It should be noted that Copeland® brand compressor capacity curves for Copelametic® compressors are based on 65°F. return suction gas. In order to realize the full compressor capacity, the suction gas must be raised to this temperature in a heat exchanger. If the suction gas returns to the compressor at a lower temperature, or if the increase in suction gas temperature occurs due to heat transfer into the suction line outside the refrigerated space, the effective compressor capacity will be somewhat lower. In the example, the desired capacity was 58,690 BTU/hr. at 24°F. evaporating temperature and 120°F.condensing temperature, and this compressor was the closest choice available, having a capacity of 57,000 BTU/hr. at the design conditions.

Figure 70 shows the same compressor curves, with the condenser capacity curves for the tentative condenser selection superimposed. From the condenser manufacturer's data, condenser capacity in terms of compressor capacity at varying evaporating temperatures are plotted, and the condenser capacity curves can then be drawn. Note that the net condensing capacity decreases at lower evaporating temperatures due to the increased heat of compression.

It is now possible to construct balance lines for the compressor and condenser at various ambient temperatures as shown in Figure 71. For an ambient temperature of 100°F., point A would represent the balance point if the compressor were operating at a suction pressure equivalent to a 28°F. evaporating temperature and 120°F. condensing temperature. At this point the capacity of the condenser would exactly match that of the compressor at a 20° TD (condensing temperature minus ambient temperature). The balance point is determined by the intersection of the 20°F. TD condenser capacity curve with the compressor capacity curve for

(continued on p. 16-9)

a condensing temperature 20°F above the specified ambient temperature of 100°F., or 120°F. In a similar manner balance point B can be located by the intersection of the 25°F. TD condenser capacity curve and the compressor capacity curve (estimated) for 125°F. condensing, and balance point C can be located by the intersection of the 15°F. TD condenser capacity curve with the compressor capacity curve (estimated) for 115°F. condensing. The line connecting points A, B, and C represents all the possible balance points when the system is operating with air entering the condenser at a temperature of 100°F. In a similar fashion, condensercompressor balance lines can be determined for other ambient temperatures, and plotted as shown in Figure 72. (To simplify the illustration, condenser capacity curves have not been shown)

The tentative evaporator coil selected was rated by the manufacturer only in terms of BTU/hr per degree temperature difference between the entering dry bulb temperature and the refrigerant evaporating temperature, and have a capacity of 4,590 BTU/hr/°TD. In Figure 73 evaporator capacity curves have been plotted and superimposed on the compressor capacity curves and the condenser-compressor balance lines. An evaporator capacity curve for each entering air temperature can be constructed by plotting any two points.

Point A represents the evaporator capacity at 14°TD which for an entering air temperature of 40°F. would require a refrigerant evaporating temperature of 26°F. However, an allowance must be made for line friction losses since the pressure in the evaporator will always be higher than the suction pressure at the compressor because of pressure drop in the suction line. Allowing 2°F. as an estimated allowance for line pressure drop, an evaporating temperature of 26°F. would result in a pressure at the compressor equivalent to a saturated evaporating temperature of 24°F. Therefore the capacity of the evaporator for a 14° TD and 40°F. entering air would be plotted at the corresponding compressor capacity at 24°F.

Point B represents the evaporator capacity at 10° TD, which for 40°F. entering air temperature requires a refrigerant evaporating temperature of 30°F., and after allowing for suction line losses, a corresponding compressor capacity at 28°F. A line can then be drawn through these two points, representing all possible capacities of the evaporator with 40°F. entering air and varying refrigerant evaporating temperatures. In a similar fashion, capacity curves can be constructed for other entering air temperatures.

The system performance can now be forecast for any condition of evaporator entering air temperature and

ambient temperature. With 100°F. ambient temperature and an evaporator entering air temperature of 40°F., the original design conditions, the system would have a capacity of 59,000 BTU/hr, a compressor suction pressure equivalent to an evaporating temperature of 26° F., and a condensing temperature of 120° F. Even under extreme load conditions of 50° F. entering air and 110° F. ambient, the condensing temperature would not exceed 133° F. These conditions are close enough to the original design requirement to insure satisfactory performance.

This type of graphical analysis can be quickly and easily made by using the compressor specification sheet as the basic chart, and superimposing condenser and evaporator capacity curves.

THE EFFECT OF CHANGE IN COMPRESSOR ONLY ON SYSTEM BALANCE

Occasionally the exact replacement compressor may not be available, and the question arises as to whether an alternate compressor with either more or less capacity might provide satisfactory performance. The graphical balance chart provides a convenient means of forecasting system performance.

Figure 74 is a revised balance chart for a system utilizing the same evaporator and condenser as in the previous example, but with a compressor having only 5/6 of the previous capacity. New compressor capacity curves for the smaller compressor have been plotted on the same capacity chart used previously. Since there is no change in the basic capacity of the condenser or evaporator, the condenser capacity and evaporator capacity curves are unchanged.

However, a new compressor-condenser balance line must be plotted, and to avoid excessive detail in the illustration, a balance line for 100° ambient temperature only has been shown.

A comparison can now be made between the system with the original compressor, Figure 73, and the system with the smaller compressor, Figure 74.

	Original <u>System</u>	Revised <u>System</u>
Ambient Temperature	100°F.	100°F.
Air Entering Evaporator	40°F.	40°F.
Refrigerant Evaporating		
Temp.	26°F.	27°F.
Condensing Temperature	120°F.	115°F.
Capacity at 100°F. Ambient and 40°F. Entering Air,		
BTU/hr.	59,000	53,000

⁽continued on p. 16-11)

Note that although the compressor capacity was decreased by 1/6 or 16 2/3%, the net system capacity decreased only about 10%. Since the condenser and evaporator were unchanged, the compressor could operate at more efficient conditions, with decreased condensing pressure and increased suction pressure.

The same type of analysis can be applied to determine the effect on system capacity if the compressor on a unit designed for 60 cycle operation is operated on 50 cycle power. However for the evaporator and condenser capacity to remain constant, the air flow across both evaporator and condenser must be unchanged. If the original balance chart was made on the basis of fans operating on 60 cycle power, and the fan air delivery is decreased by operation of the fan motors on 50 cycle power, then both the evaporator and condenser capacity curves must be changed to reflect the decrease in capacity.

Another type of application where this type of analysis may be valuable is on systems with fluctuating loads and compressors with capacity control features. Since the evaporator and condenser remain unchanged, the reduced compressor capacity can be plotted as demonstrated, and new balance points determined, taking into effect any changes in the temperature of the air entering the evaporator.

QUICK SELECTION TABLES FOR WALK-IN COOLERS

The most accurate means of determining the refrigeration load is by calculating each of the factors contributing to the load as was done in the previous example. However, for small walk-in coolers, various types of short cut estimating methods are frequently used.

The transmission load will always be dependent on the external surface, and an actual calculation should be made where possible.

As an aid in rapid selection of a condensing unit for the normal walk-in cooler application, Tables 19 and 20 give recommended refrigeration capacities for various sized coolers. The condensing unit capacity must be equal to or greater than the capacity shown at the required refrigerant evaporating temperature after allowance for the desired evaporating and condensing TD.

The capacities given are for average applications. If the load is unusual, these tables should not be used. The low temperature tables do not include any allowance for a freezing load, and if a product is to be frozen, additional capacity will be required.

Table 18

RECOMMENDED CONDENSING UNIT CAPACITY FOR WALK-IN COOLERS 35° F. TEMPERATURE

Outside dimensions	Btu/hr for 16	-hr operation	Outside dimensions	Btu/hr for 16-hr operation			
ft.	Average service Heavy service		ft.	Average service	Heavy service		
6×5	2,580	3,180	14×10	8,640	10,900		
6×6	2,960	3,540	14×12	9,720	12,300		
7×5	2,930	3,540	14×14	10,800	13,700		
7×6	3,380	4,080	16×8	8.140	10,000		
7×7	3,790	4,620	16×10	9,340	12,000		
8×5	3,240	3,920	16×12	10,700	13,450		
8×6	3,710	4,530	16×14	12,000	15,000		
8×7	4,200	5,170	16×16	13,100	16,600		
8×8	4,680	5,680	18×10	10,300	13,000		
9×6	4,080	4,960	18×12	11,700	14,800		
9×7	4,600	5,640	18×14	13,100	16,400		
9×8	5,080	6,260	18×16	14,400	17,400		
9×9	5,580	6,920	18×18	15,800	19,600		
10×6	4,450	5,450	20×10	11,300	13,700		
10×7	5,010	6,200	6,200	6,200	20×12	12,800	15,700
10×8	5,520	6,880	20×14	14,300	17,600		
10×9	6,080	7,520	20×16	15,600	19,400		
10×10	6,630	8,150	20×18	17,000	21,100		
11×6	4,820	5,910	20×20	18,700	22,700		
11 X 7	5,380	6,630	22×12	13,700	17,100		
11 × 8	6,000	7,350	22×14	15,300	18,900		
11 × 9	6,520	9,050	22×16	16,800	20,800		
11 × 10	7,100	8,800	22×18	18,300	22,000		
12×6	5,150	6,350	24×12	14,700	18,200		
12×8	6,400	7,700	24×14	16,200	20,300		
12×10	7,590	9,380	24×16	17,300	22,100		
12×12	8,800	10,800	24×18	19,300	24,000		
14×8	7,300	9,050					

9 feet height, 95° F. ambient temperature, 4" insulation

Note: Heat gain based on insulation with "K" factor of .25. Required capacity must be corrected for different "K" factor, or different thickness of insulation.

From 1965-1966 ASHRAE Guide & Data Book, Reprinted by Permission

Table 19 RECOMMENDED CONDENSING UNIT CAPACITY FOR WALK-IN COOLERS LOW TEMPERATURE

9	feet	height,	90°	F.	ambient	temperature
---	------	---------	-----	----	---------	-------------

Outside Dimensions		BTU/hr FOR 18 HOUR OPERATION					
in Feet		-20° F. Storage	— 10° F. Storage	0° F. Storage			
Length	Width	8" Insulation	6" Insulation	6" Insulation			
6	6	4,000	4,500	3,750			
6	10	5,700	5,800	5,050			
7	7	5,000	5,300	4,650			
7	10	6,400	6,450	5,800			
8	8	5,900	6,200	5,500			
8	12	7,200	7,650	7,000			
9	9	6,700	7,000	6,300			
10	10	7,600	7,900	7,100			
10	14	9.200	9,600	8,700			
12	12	9,400	9,900	9,600			
12	16	11,300	11,800	10,900			
14	14	11,400	12,000	11,200			
14	18	13,300	13,900	12,700			
16	16	13,400	14,000	12,900			
16	20	15,100	16,000	14,900			
18	18	15,200	16,100	15,000			
18	20	16,100	17,200	15,600			
20	20	16,800	18,400	16,600			

Note: Heat gain based on insulation with "K" factor of .25. Required capacity must be corrected for different "K" factor, or different thickness of insulation.

The numbers in bold-face type in the center column refer to the temperature, either in Centigrade or Fahrenheit, which is to be converted to the other scale. If converting Fahrenheit to Centigrade, the equivalent temperature will be found in the left column. If converting Centigrade to Fahrenheit, the equivalent temperature will be found in the column on the right.

Temperature		Temperature			Temperature			Temperature			
Cent.	C or F	Fahr	Cent.	C or F	Fahr	Cent.	C or F	Fahr	Cent.	C or F	Fahr
-40.0 -39.4 -38.9 -38.3 -37.8	-40 -39 -38 -37 -36	$\begin{array}{r} -40.0 \\ -38.2 \\ -36.4 \\ -34.6 \\ -32.8 \end{array}$	$ \begin{array}{r} -6.7 \\ -6.1 \\ -5.5 \\ -5.0 \\ -4.4 \end{array} $	+20 +21 +22 +23 +24	$\begin{array}{r} +68.0 \\ +69.8 \\ +71.6 \\ +73.4 \\ +75.2 \end{array}$	+26.7 +27.2 +27.8 +28.3 +28.9	+80 +81 +82 +83 +84	+176.0 +177.8 +179.6 +181.4 +183.2	+60.0 +60.6 +61.1 +61.7 +62.2	+140 +141 +142 +143 +144	+284.0 +285.8 +287.6 +289.4 +291.2
-37.2 -36.7 -36.1 -35.6 -35.0	$ \begin{array}{r} -35 \\ -34 \\ -33 \\ -32 \\ -31 \\ \end{array} $	$\begin{array}{r} -31.0 \\ -29.2 \\ -27.4 \\ -25.6 \\ -23.8 \end{array}$	$ \begin{array}{c c} -3.9 \\ -3.3 \\ -2.8 \\ -2.2 \\ -1.7 \end{array} $	+25 +26 +27 +28 +29	+77.0 +78.8 +80.6 +82.4 +84.2	+29.4 +30.0 +30.6 +31.1 +31.7	+85 +86 +87 +88 +89	+185.0 +186.8 +188.6 +190.4 +192.2	+62.8 +63.3 +63.9 +64.4 +65.0	+145 +146 +147 +148 +149	+293.0 +294.8 +296.6 +298.4 +300.2
34.4 33.9 33.3 32.8 32.2	30 29 28 27 26	-22.0 -20.2 -18.4 -16.6 -14.8	$ \begin{array}{r} -1.1 \\ -0.6 \\ .0 \\ +0.6 \\ +1.1 \end{array} $	+30 +31 +32 +33 +34	+86.0 +87.8 +89.6 +91.4 +93.2	+32.2 +32.8 +33.3 +33.9 +34.4	+90 +91 +92 +93 +94	+194.0 +195.8 +197.6 +199.4 +201.2	+65.6 +66.1 +66.7 +67.2 +67.8	+150 +151 +152 +153 +154	+302.0 +303.8 +305.6 +307.4 +309.2
-31.7 -31.1 -30.6 -30.0 -29.4	-25 -24 -23 -22 -21	-13.0 -11.2 -9.4 -7.6 -5.8	+1.7 +2.2 +2.8 +3.3 +3.9	+35 +36 +37 +38 +39	+95.0 +96.8 +98.6 +100.4 +102.2	+35.0 +35.6 +36.1 +36.7 +37.2	+95 +96 +97 +98 +99	+203.0 +204.8 +206.6 +208.4 +210.2	+68.3 +68.9 +69.4 +70.0 +70.6	+155 +156 +157 +158 +159	+311.0 +312.8 +314.6 +316.4 +318.2
$\begin{array}{r} -28.9 \\ -28.3 \\ -27.8 \\ -27.2 \\ -26.7 \end{array}$	-20 -19 -18 -17 -16	-4.0 -2.2 -0.4 +1.4 +3.2	+4.4 +5.0 +5.5 +6.1 +6.7	+40 +41 +42 +43 +44	+104.0 +105.8 +107.6 +109.4 +111.2	+37.8 +38.3 +38.9 +39.4 +40.0	+100 +101 +102 +103 +104	+212.0 +213.8 +215.6 +217.4 +219.2	+71.1 +71.7 +72.2 +72.8 +73.3	+160 +161 +162 +163 +164	+320.0 +321.8 +323.6 +325.4 +327.2
-26.1-25.6-25.0-24.4-23.9	$-15 \\ -14 \\ -13 \\ -12 \\ -11$	+5.0 +6.8 +8.6 +10.4 +12.2	+7.2 +7.8 +8.3 +8.9 +9.4	+45 +46 +47 +48 +49	+113.0 +114.8 +116.6 +118.4 +120.2	+40.6 +41.1 +41.7 +42.2 +42.8	+105 +106 +107 +108 +109	+221.0 +222.8 +224.6 +226.4 +228.2	+73.9 +74.4 +75.0 +75.6 +76.1	+165 +166 +167 +168 +169	+329.0 +330.8 +332.6 +334.4 +336.2
$\begin{array}{r} -23.3 \\ -22.8 \\ -22.2 \\ -21.7 \\ -21.1 \end{array}$	-10 -9 -8 -7 -6	+14.0 +15.8 +17.6 +19.4 +21.2	+10.0 +10.6 +11.1 +11.7 +12.2	+50 +51 +52 +53 +54	+122.0 +123.8 +125.6 +127.4 +129.2	+43.3 +43.9 +44.4 +45.0 +45.6	+110 +111 +112 +113 +114	+230.0 +231.8 +233.6 +235.4 +237.2	+76.7 +77.2 +77.8 +78.3 +78.9	+170 +171 +172 +173 +174	+338.0 +339.8 +341.6 +343.4 +345.2
-20.6-20.0-19.4-18.9-18.3	$ \begin{array}{r} -5 \\ -4 \\ -3 \\ -2 \\ -1 \end{array} $	+23.0 +24.8 +26.6 +28.4 +30.2	$\begin{array}{r} +12.8 \\ +13.3 \\ +13.9 \\ +14.4 \\ +15.0 \end{array}$	+55 +56 +57 +58 +59	+131.0 +132.8 +134.6 +136.4 +138.2	+46.1 +46.7 +47.2 +47.8 +48.3	+115 +116 +117 +118 +119	$^{+239.0}_{+240.8}_{+242.6}_{+244.4}_{+246.2}$	+79.4 +80.0 +80.6 +81.1 +81.7	+175 +176 +177 +178 +179	+347.0 +348.8 +350.6 +352.4 +354.2
-17.8 -17.2 -16.7 -16.1 -15.6	0 +1 +2 +3 +4	+32.0 +33.8 +35.6 +37.4 +39.2	$\begin{array}{c} +15.6 \\ +16.1 \\ +16.7 \\ +17.2 \\ +17.8 \end{array}$	+60 +61 +62 +63 +64	+140.0 +141.8 +143.6 +145.4 +147.2	$^{+48.9}_{+49.4}_{+50.0}_{+50.6}_{+51.1}$	+120 +121 +122 +123 +124	$ \begin{array}{r} +248.0 \\ +249.8 \\ +251.6 \\ +253.4 \\ +255.2 \end{array} $	+82.2 +82.8 +83.3 +83.9 +84.4	+180 +181 +182 +183 +184	+356.0 +357.8 +359.6 +361.4 +363.2
-15.0 -14.4 -13.9 -13.3 -12.8	+5 +6 +7 +8 +9	+41.0 +42.8 +44.6 +46.4 +48.2	$\begin{array}{c} +18.3 \\ +18.9 \\ +19.4 \\ +20.0 \\ +20.6 \end{array}$	+65 +66 +67 +68 +69	$\begin{array}{r} +149.0 \\ +150.8 \\ +152.6 \\ +154.4 \\ +156.2 \end{array}$	+51.7 +52.2 +52.8 +53.3 +53.9	+125 +126 +127 +128 +129	$ \begin{array}{r} +257.0 \\ +258.8 \\ +260.6 \\ +262.4 \\ +264.2 \end{array} $	$\begin{array}{r} +85.0 \\ +85.6 \\ +86.1 \\ +86.7 \\ +87.2 \end{array}$	+185 +186 +187 +188 +189	+365.0 +366.8 +368.6 +370.4 +372.2
-12.2 -11.7 -11.1 -10.6 -10.0	+10 +11 +12 +13 +14	+50.0 +51.8 +53.6 +55.4 +57.2	$\begin{array}{c c} +21.1 \\ +21.7 \\ +22.2 \\ +22.8 \\ +23.3 \end{array}$	+70 +71 +72 +73 +74	+158.0 +159.8 +161.6 +163.4 +165.2	$\begin{array}{r} +54.4 \\ +55.0 \\ +55.6 \\ +56.1 \\ +56.7 \end{array}$	+130 +131 +132 +133 +134	$\begin{array}{r} +266.0 \\ +267.8 \\ +269.6 \\ +271.4 \\ +273.2 \end{array}$	+87.8 +88.3 +88.9 +89.4 +90.0	+190 +191 +192 +193 +194	+374.0 +375.8 +377.6 +379.4 +381.2
-9.4 -8.9 -8.3 -7.8 -7.2	+15 +16 +17 +18 +19	$\begin{array}{r} +59.0 \\ +60.8 \\ +62.6 \\ +64.4 \\ +66.2 \end{array}$	$\begin{array}{c} +23.9 \\ +24.4 \\ +25.0 \\ +25.6 \\ +26.1 \end{array}$	+75 +76 +77 +78 +79	$\begin{array}{c} +167.0 \\ +168.8 \\ +170.6 \\ +172.4 \\ +174.2 \end{array}$	$\begin{array}{c c} +57.2 \\ +57.8 \\ +58.3 \\ +58.9 \\ +59.4 \end{array}$	+135 +136 +137 +138 +139	$\begin{array}{c} +275.0 \\ +276.8 \\ +278.6 \\ +280.4 \\ +282.2 \end{array}$	$\begin{array}{c} +90.6 \\ +91.1 \\ +91.7 \\ +92.2 \\ +92.8 \end{array}$	+195 +196 +197 +198 +199	+383.0 +384.8 +386.6 +388.4 +390.2

Fram 1967 ASHRAE Handbook of Fundamentals, Reprinted by Permission

1675 W. Campbell Rd. Sidney, OH 45365 EmersonClimate.com

Form No. AE 103 R3 (10/06) Emerson®, Emerson. Consider It Solved™, Emerson Climate Technologies™ and the Emerson Climate Technologies™ logo are the trademarks and service marks of Emerson Electric Co. and are used with the permission of Emerson Electric Co. Copelametic®, Copeland®, and the Copeland® brand products logo are the trademarks and service marks of Emerson Climate Technologies, Inc. All other trademarks are the property of their respective owners. Printed in the USA. © 1968 Emerson Climate Technologies, Inc. All rights reserved.